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1.1 Obtaining a copy of ONETEP
If you are an academic license user, you should have received a tarball of a personalised ONETEP copy once
you have signed an academic licence agreement. Create a new directory, unpack the tarball there (tar -xfz
your_tarball_name.tar.gz), and you’re done. You can now go straight to Compiling, testing and running
ONETEP.

If you plan to have continuous access to the current ONETEP source code, likely because you are a ONETEP developer
or contributor, or collaborate with one, you will want to have access to the official ONETEP GitHub repository.

1. Take a look at Repository location and structure and ONETEP GitHub set-up to get acquainted with the overall
set-up.

2. If you don’t have a GitHub account yet, follow the steps at Creating a GitHub user account to create one.

3. Then, create a GitHub personal access token by following the steps at Creating a GitHub personal access token
(PAT). Without it you will not be able to access the repository due to GitHub policies (unless you already have
a PAT ).

4. Follow Getting access to the ONETEP repository to get access. Be sure to follow further instuctions there,
depending on whether you plan to be a User or a Contributor. Congratulations, you have your own copy of
ONETEP!

Continue along to Compiling, testing and running ONETEP.

1.2 Compiling, testing and running ONETEP
These are the instructions for setting the environment prior to compiling ONETEP, for how to compile ONETEP, and
how to run quality-check (“QC”) tests that will give you confidence in the robustness of your installation. There are
also instructions on how to actually submit (start) your jobs.

These instructions differ depending on your environment (the machine on which you will run ONETEP and the installed
software, such as compilers or external libraries). They are provided separately.
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1. Go to the directory with your ONETEP installation.

2. Change to the hpc_resources directory. There you will see a number of well-supported systems, such as
Archer2 or Young (and more).

3. If your machine is well-supported by ONETEP, just follow the compilation, testing and running instructions
there. For instance, instructions for Iridis5 would be found at hpc_resources/Iridis5/instructions_iridis5.pdf.

If your machine is not in the list of well-supported systems, you will need to adapt one of the existing con-
figs. Look into the subdirectories under hpc_resources and also in the config directory in your ONETEP
installation.

Important point about compiling ONETEP following a git merge:

, Warning

If you just updated your ONETEP source via git merge or git pull (rather than cloning via git clone or
unpacking ONETEP from a tarball), issue a make cleanall before compiling. The script for cascade avoidance
used when making ONETEP can get confused as to what needs to be rebuilt after a git merge or git pull. If
you forget about make cleanall, you may get an executable that builds correctly but malfunctions in strange ways
(usually producing very unexpected error messages).

Important point about running QC tests:

, Warning

Never run the QC tests in the actual repository. Create a copy of your ONETEP installation directory (e.g. cp -a
onetep_jd onetep_jd_qc) and run the tests in the directory of the copy. Much of the stuff in the install is not
needed to run the tests (e.g. all of src/), but it’s just less hassle to copy the entire thing than pick out the necessary
subdirectories.

Why not run the QC tests in the actual repository? Because they produce outputs, which can become messy to clean
up back to pristine state, polluting your repository with spurious changes. This becomes more problematic because
symbolic links are used in the QC test suite. Trying to update your repository via git pull or git fetch may be
tricky when you have unfinished or improperly cleaned up QC tests. Just don’t run them straight in the repository.

1.3 Creating input files
Go to the ONETEP website, onetep.org. There, under Resources you will find the Tutorials section, which introduces
running various kinds of ONETEP calculations. Take a look at some of the input files at the bottom of the page. Input
files in ONETEP have the .dat file extension. Should any files get downloaded having a .txt extension, you will need
to rename them to end with .dat.

Input files contain keywords, instructing ONETEP on what calculations to run, and to set the parameters needed to run
them. Check out the keywords on the webpage onetep.org/Main/Keywords to see what they mean. If not specified,
most of them have default settings, as listed on the webpage.

The keywords come in different types: logical, integer, real, text, physical and block. Keywords of the type
logical can have a value of T (true) or F (false). Keywords that are integer and real are numbers. Keywords
of type text are a string of characters (for example a filename). Keywords of the type physical refer to physical
variables, which come with units such as angstroem, bohr, joule, hartree, etc. A block indicates more than one line of
input, these are often used for specifying coordinates.

Some of the important keywords to get started are:

2 Chapter 1. Starting with ONETEP
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• task – to choose what main calculation you would like ONETEP to perform, e.g. a single point energy calcula-
tion or geometry optimisation. You can run a properties calculation this way, using output files generated from a
single point energy calculation or using task singlepoint and a separate keyword do_properties set to T.

• xc_functional – to choose how to approximate the exchange-correlation term in the Kohn Sham DFT energy
expression.

• %block lattice_cart – to define the dimensions of the simulation cell.

• %block positions_abs – to define the atomic positions in Cartesian coordinates.

As can be seen from the example input files, all block keywords must end with a corresponding endblock. Be default
all coordinates are in atomic units (bohr). To switch to angstroems, add ang in the first line of the block:

%block positions_abs

ang

C 16.521413 15.320039 23.535776

O 16.498729 15.308934 24.717249

. . .
%endblock positions_abs

The species and species_pot blocks detail the parameters of the atoms. Non-orthogonal Generalised Wannier
Functions (NGWFs) are used to model the atomic orbitals. In the species block, the name we give to each type atom
in the system is given first, followed by the element of the atom, its atomic number, the number of NGWFs to use (use
-1 for an educated guess) and the radius of each NGWF typically around 8.0-10.0 (in bohr) for an accurate calculation.
For instance for carbon you might use:

C C 6 4 8.0

The species_pot block specifies the location of the pseudopotential used for each element of the system. The stan-
dard ONETEP norm-conserving pseudopotentials (.recpot files) exclude core electrons. Core electrons are included
in .paw files. Some of these can be found in your repository’s pseudo directory. A complete database of all pseu-
dopotentials for all elements in the .paw format can be downloaded from https://www.physics.rutgers.edu/gbrv/all_
pbe_paw_v1.5.tar.gz. There are also PAWs and pseudopotential (.recpot) files in the utils-devel repository at
https://github.com/onetep-devel/utils-devel.

To continue a calculation if it has run out of computation time, use the keywords below. The original input must have
the write keywords, but no read keywords because the files aren’t available to read at this stage. Any continuing
input files must include the read keywords. If the input file name isn’t changed upon continuation, the output file will
be overwrite with the results of the continuation, so make sure to back up files before continuing.
write_denskern T

write_tightbox_ngwfs T

read_denskern T

read_tightbox_ngwfs T

If you are running an ensemble DFT (EDFT) calculation you will also need to add
write_hamiltonian T

read_hamiltonian T

to the above list.

1.3. Creating input files 3

https://www.physics.rutgers.edu/gbrv/all_pbe_paw_v1.5.tar.gz
https://www.physics.rutgers.edu/gbrv/all_pbe_paw_v1.5.tar.gz
https://github.com/onetep-devel/utils-devel


ONETEP Documentation, Release 7.1.8

1.4 Running ONETEP in parallel environments
ONETEP is typically run on more than one CPU core – whether on a desktop computer, or at a high-performance
computing (HPC) facility. This is termed parallel operation. There are two main modes of parallel operation –
distributed-memory computing (sometimes termed simply parallelism), and shared-memory computing (sometimes
termed concurrency). ONETEP combines both of them, so it will be crucial to understand how they work.

1.4.1 Distributed-memory parallelism (MPI)
In this scenario a collection of individual processes (that is, running instances of a program) work together on the same
calculation. The processes can all reside on the same physical machine (often termed node) – e.g. when you run them
on your many-core desktop machine – or on separate machines (nodes) – e.g. when you run them at an HPC facility.

In both cases processes reside in separate memory spaces, which is a fancy way of saying they do not share memory
– each of them gets a chunk of memory and they don’t know what the other processes have in their chunks. Yes, even
when they are on the same machine.

The problem they work on has to be somehow subdivided between them – this is known as parallel decomposition.
One common way of doing that – and one that ONETEP employs – is data decomposition, where it’s the data in
the problem that is subdivided across processes. In ONETEP the grids on which quantities like electronic density or
external potential are calculated are divided across processes, with each process “owning” a slab of the grid. Similarly,
the atoms in the system are divided across processes, with each process “owning” a subset of atoms. Both of these
concepts are illustrated in Fig. 1.1.

Fig. 1.1: Illustration of parallel data decomposition in ONETEP. Figure borrowed from J. Chem. Phys. 122, 084119
(2005), https://doi.org/10.1063/1.1839852, which you are well-advised to read.

From the point of view of the operating system, the processes running on a machine are separate entities (see Fig. 1.2),
and collaboration between them almost always necessitates some form of communication (because, remember, they
do not share memory) – e.g. process #1 may need to ask process #2 “what are the positions of your atoms?” This is

4 Chapter 1. Starting with ONETEP
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accomplished by a dedicated software library known as Message Passing Interface (MPI). This is why we often call
the processes MPI processes, or, more technically, MPI ranks.

Fig. 1.2: Four ONETEP processes running on one machine, each utilising 100% of a CPU core and 0.4% of available
memory.

MPI facilitates starting multiple processes as part of a single calculation, which can become slightly tricky when there
are multiple machines (nodes) involved. Your MPI installation will provide a dedicated command for running multiple
processes. The command is often called mpirun, aprun, gerun, srun or something similar (it will certainly be stated
in the documentation for your system). On a desktop machine its invocation typically looks like this:

mpirun -np 4 ./onetep_launcher input.dat >input.out 2>input.err

Here, mpirun is the name of the command for launching multiple processes, -np 4 asks for four processes,
onetep_launcher is the name of the script for launching ONETEP – it’s the script that will actually be run on four
CPU cores, and each instance will start one ONETEP process for you – here we assume it’s in the current directory
(./), input.dat is your ONETEP input file. Output will be sent (“redirected”) to onetep.out, and error messages
(if any), will be redirected to input.err. All four processes will be started on the same machine.

In HPC environments the syntax will be slightly different, because the number of processes will be automatically
inferred by the batch (queueing) system, the batch system will also take care of instructing mpirun (or equivalent)
what machines to put the processes on.

MPI lets you run your calculation on as many processes as you like – even tens of thousands. However, there are
practical limitations to how far you can go with ONETEP. Looking at Fig. 1.1 it becomes clear that you cannot have
more MPI processes than atoms – or some processes would be left without work to do. In fact this limitation is even
slightly stricter – to divide work more evenly ONETEP tries to give each processes a similar number of NGWFs, not
atoms. For instance, for a water molecule run on two processes, it makes sense to assign the O atom and its 4 NGWFs
to one process, and both H atoms (1 NGWF each) to the second process. If you try to run a calculation on H:sub:`2`O
on three processes, it’s very likely that ONETEP will do the same thing – assign O to one processes, both H’s to another
process and the third process will wind up with no atoms. This will cause the calculation to abort. So, one limitation
is you will not be able to use more MPI processes that you have atoms in your system, and even slightly smaller
numbers of MPI processes might not work. Even if they do, you don’t really want that, because load balancing will
be rather poor – the processor that gets the O atom has roughly twice as much work to do as the one that gets the two
H atoms. The bottom line is – you should have at least several atoms per MPI rank – in the interest of efficiency.

1.4.2 Shared-memory parallelism (OMP)
This approach, sometimes known as concurrency, concurrent processing or colloquially as threads, uses shared mem-
ory. The way it works is a process spawns (starts) a number of threads of execution, with each thread delegated to
a separate CPU core. Typically each thread works with a subset of data, and, in contrast to processes, threads within
the same process can access each other’s memory. For example, if a process was given 50 atoms to work with, it can
spawn 4 threads and tell each thread to work on 12-13 atoms. Because threads share memory, they do not need special
mechanisms to communicate – they can just use memory for this. What they need instead are special mechanisms for
synchronisation – e.g. so that thread 1 knows thread 2 finished writing something to memory and it’s safe to try to read
it. These mechanisms are described by a standard known as OpenMP, or OMP for short.

1.4. Running ONETEP in parallel environments 5
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In ONETEP threads are most conveniently handled using the launcher’s -t option, which instructs it how many threads
each process should spawn. For instance the command

./onetep_launcher -t 8 input.dat >input.out 2>input.err

runs one process (note the absence of mpirun), which spawns eight threads. This is what it looks like to the operating
system:

Fig. 1.3: One ONETEP process that spawned eight threads, running on one machine, utilising almost 800% of a CPU
core and 1.3% of available memory – this is for the entire process encompassing eight threads.

Thread-based processing has a number of limitations. As threads reside within a process, you cannot feasibly run more
threads than you have CPU cores on a node – in other words, threading is limited to a single node. Moreover, large
numbers of threads quickly become inefficient. If a processes owns 10 atoms, using more than 10 threads will not give
you any advantage, because the additional threads will not have anything to work with (fortunately, this does not lead
to the calculation aborting, only to some threads idling). Even with four threads you will lose some efficiency, because
some threads will get 3 atoms and some only 2. ONETEP works best with about 4-6 threads, unless you are using
Hartree-Fock exchange (HFx), which is the most efficient on large thread counts.

Threads are easiest to control via onetep_launcher, which you are advised to use, but ONETEP also provides key-
words for controlling them manually – these are threads_max, threads_per_fftbox, threads_num_fftboxes,
threads_per_cellfft and threads_num_mkl. Each of these sets the number of threads spawned from a single
process for some part of ONETEP’s functionality. This is advanced stuff and will not be covered in this beginners’
document.

Another point to note is that each thread requires its own stack (a region of memory for intermediate data) in addition
to the global (per-process) stack. This per-thread stack needs to be large enough – almost always 64 MB suffices. So,
if you spawn 16 threads from a process, that’s an extra 1024 MB of memory that you need, per process. If you use
onetep_launcher, it takes care of setting this stack for you. If you don’t – you’ll need to take care of this on your own
(by exporting a suitable OMP_STACKSIZE) or you risk ugly crashes when the stack runs out. Not recommended.

1.4.3 Hybrid (combined MPI+OMP) parallelism
For anything but the smallest of systems, combining MPI processes with OMP threads is the most efficient approach.
This is known as hybrid parallelism. In ONETEP this is realised simply by combining mpirun (or equivalent) with
onetep_launcher’s -t option, like this:

mpirun -np 4 ./onetep_launcher -t 8 input.dat >input.out 2>input.err

Here we are starting 4 processes, each of which spawns 8 threads. This set-up would fully saturate a large, 32-core
desktop machine.

Setting up processes and threads looks slightly different in HPC systems, where you need to start them on separate
nodes. Your submission script (you will find ones for common architectures in the hpc_resources directory of your
ONETEP installation) defines all the parameters at the top of the script and then accordingly invokes mpirun (or
equivalent) and onetep_launcher. Look at the beginning of the script to see what I mean.

1.4.4 How many nodes, processes and threads should I use?
There are a few points worth considering here. First of all, efficiency almost universally decreases with the number
of CPU cores assigned to a problem. That is to say, throwing 100 cores at a problem is likely to reduce the time to
solution by less than 100-fold. This is because of communication overheads, load imbalance and small sections of the
algorithm that remain sequential, and is formally known as Amdahl’s law. It’s worth keeping this in mind if you have a
large number of calculations to perform (known as task farming) – if you have 1000 calculations to perform, and have
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500 CPU cores at your disposal, time to solution will be the shortest if you run 500 1-core jobs first, followed by 500
1-core jobs next. If you opt for running a job on 500 CPU cores simultaneously, and do this for 1000 jobs in sequence,
your time to solution will be much, much worse, because of efficiency diminishing with the number of cores.

Having said that, task farming is not the only scenario in the world. Sometimes you have few jobs, or only one, that
you want to run quickly. Here, you’re not overly worried about efficiency – if running the job on 1 CPU core takes a
month, and using 100 CPU cores reduces it to a day, you’d still take 100 CPU cores, or even more. You just have to
remember that the returns will be diminishing with each CPU core you add1.

The remaining points can be summarised as follows:

1. Avoid using 1-2 atoms per MPI process, unless there’s no other way. Try to have at least several atoms per MPI
process – for good load-balancing.

2. For OMP threads the sweet spot is typically 4-5 threads. If you have a giant system, so that you have a hundred
atoms or more per MPI process, you might be better off using 2 threads or even 1 (using purely distributed-
memory parallelism). This is because load balancing will be very good with high numbers of atoms per MPI
process. If you have a small system, or if already using large numbers of MPI processes, so that you wind up
with very few atoms per MPI process (say, below 5), you might find that using higher numbers of threads (say,
8) to reduce the number of MPI processes is beneficial.

3. Know how many CPU cores you have on a node. Make sure the number of MPI processes per node and OMP
threads per process saturate all the node’s cores. For instance, if you have 40 CPU cores on a node, you should
aim for 10 processes per node, 4 threads each; or 20 processes per node, 2 threads each; or 40 processes per node,
1 thread each; or 4 processes per node, 10 threads each. 2 processes per node with 20 threads each would also
work, but would likely be suboptimal. Just don’t do things like 3 processes with 10 threads, because then you
leave 10 CPU cores idle, and don’t do things like 6 processes with 10 threads, because you then oversubscribe
the node (meaning you have more threads than CPU cores) – this degrades performance.

4. Nodes are often divided internally into NUMA regions – most often there are two NUMA regions per node. The
only thing you need to know about NUMA regions is that you don’t want a process to span across them. This
is why in the example above you did not see 5 processes with 8 OMP threads each or 8 processes with 5 OMP
threads each – I assumed there are two NUMA regions with 20 CPU cores each. In both examples here you
would have a process spanning across two NUMA regions. It works, but is much slower.

5. Points 1-3 above do not apply to Hartree-Fock exchange calculations. Point 4 applies. When doing HFx cal-
culations (this includes calculations with hybrid exchange-correlation functionals, like B3LYP) follow the more
detailed instructions in the HFx manual.

6. If you find that your calculation is running out of memory, your first step should be to increase the number of nodes
(because it splits the problem across a set-up with more total RAM). Another idea is to shift the MPI/OMP balance
towards more threads and fewer MPI processes (because this reduces the number of buffers for communication
between MPI processes). So if your job runs out of memory on 2 nodes with 10 processes on each and with 4
threads per process, give it 4 or more nodes with 10 processes on each with 4 threads per each, or switch to 4
processes with 10 OMP threads.

1 Hartree-Fock exchange calculations being an important exception
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This chapter describes a number of procedures for working with GitHub. These are separate procedures, each perform-
ing a simple GitHub-related operation. They are not meant to be invoked in numerical sequence.

2.1 Repository location and structure
The ONETEP GitHub repository is located at https://github.com/onetep-devel/.

onetep-devel is the organisation. It contains four repositories (which you can see by clicking Repositories at the
top):

1. documentation (public) – containing the source of the documentation, for instance this document.

2. tutorials (public) – containing the source of the ONETEP tutorials.

3. utils-devel (public) – containing the utilities and resources that are not directly distributed with ONETEP,
such as scripts, GFN parameters, vdW parameters, PAW datasets, and developer documentation.

4. onetep (private) – containing the ONETEP distribution itself, which is mostly Fortran source code (src/),
quality-check tests (tests/) and utilities (utils/).

The onetep repository is private, so if you haven’t been granted access to it, you will only see three repositories at
https://github.com/onetep-devel, and trying to go directly to https://github.com/onetep-devel/onetep will give you a
404 Page not found.

2.2 ONETEP GitHub set-up
Fig. 2.1 shows how the ONETEP workflow is set up on GitHub and locally, on your drive.
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Fig. 2.1: Set-up of ONETEP on GitHub. There is one official repository. Users clone the repository (once), and later
pull if they want to update it with the latest changes. They cannot contribute. Contributors fork the repository first
(once), then clone the fork (once), not the official repository. They fetch (and merge) from the fork when they want
to update. When they want to contribute changes, Contributors push to their fork first, then submit a pull request
from the fork to the official repository. No pushing to the official repository happens at any stage. All contributions
happen via pull requests.

2.3 Creating a GitHub user account
Go to https://github.com/signup and follow the instructions there. Use your university or organisation email.

2.4 Creating a GitHub personal access token (PAT)
To be able to access the ONETEP repository via git, you will need to create a personal access token or PAT on GitHub.
This is a distinct password from the one you use to access the GitHub web interface, it will only be used for accessing
the repository through git – the two passwords are not interchangeable. You must have a PAT set up, you will not be
able to access the ONETEP repository with your GitHub password.

For technical details, read https://docs.github.com/en/get-started/getting-started-with-git/about-remote-repositories#
cloning-with-https-urls

To create a PAT, on your GitHub page click your profile picture (top right) and choose Settings from the drop-down
list. In the panel on the left, scroll to the very bottom and click <> Developer settings. On the page that opens,
in the panel on the left choose Personal access tokens and then Tokens (classic). Click on Generate new
token, then Generate new token (classic). On the page that opens up, put something descriptive in the Note
field, like My personal access token for accessing ONETEP. Choose an expiration date for your token if you want it
to expire after a certain time, or No expiration if you don’t want it to expire. Under Select scopes check repo,
and nothing else. Click on the green Generate token button at the bottom. Your PAT has been created. Make sure
to copy it to a safe place at this point – once you leave this page, you will not be able to retrieve it (just create a new
PAT if this happens).

2.5 Getting access to the ONETEP repository
The documentation, tutorials and utils-devel repositories are public – you don’t need any special access, just
go to https://github.com/orgs/onetep-devel/repositories.

To get access to the onetep repository (with the ONETEP source code), you will need to be granted access. Contact
Chris-Kriton Skylaris (C.Skylaris[-at-]soton.ac.uk) and ask to be added as a member to the onetep repository.

10 Chapter 2. Working with GitHub
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If you do not have a GitHub account yet, make sure to create one first – follow the instructions at Creating a GitHub
user account.

To be able to access the repository via git, you must create a personal access token on GitHub. Follow the instructions
at Creating a GitHub personal access token (PAT) if you haven’t done that already.

Once your request to join the onetep repository is approved, you will get a GitHub invitation in your email. In the email
message, accept the invitation by clicking the green button. On the webpage that opens click Join onetep-devel.
You are now a member of the onetep repository.

If you plan to be a ONETEP User (you’d like to use ONETEP and maybe view the source code), follow the steps
described in Cloning the official ONETEP repository, then go to Compiling, testing and running ONETEP.

If you plan to be a ONETEP Contributor (you’d like not only to use ONETEP, but also contribute to it), follow the
steps described in Forking the official ONETEP repository, then in Cloning your private ONETEP fork, then go to
Compiling, testing and running ONETEP.

2.6 Cloning the official ONETEP repository
This procedure is only meant for Users. Contributors should go to Forking the official ONETEP repository instead,
then to Cloning your private ONETEP fork.

Cloning the ONETEP repository lets you get a copy of the ONETEP distribution, including the source code, the quality-
check (QC) tests, and essential scripts. Think of this clone as of your personal copy of ONETEP. This copy will reside
locally, on your disk. See also Fig. 2.1, the left-hand side.

To clone the ONETEP repository, go to your terminal and issue:

git clone https://github.com/onetep-devel/onetep.git

When prompted for username, enter your GitHub username. When prompted for password, type in (or preferably paste)
your GitHub personal access token, not your GitHub password.

See Storing GitHub personal access token (PAT) in git for instructions on how to have git store your credentials so
that you don’t have to type or paste them each time you want to perform an action on your repository.

As a User you don’t have permissions to write to the repository. Attempts to do so will finish with:

remote: Write access to repository not granted.

2.7 Cloning the documentation, tutorials or utils-devel repositories
This procedure is only meant for Users. Contributors should go to Forking the documentation, tutorials or utils-devel
repositories instead, then to Cloning your private documentation, tutorials or utils-devel fork.

These repositories are public.

Cloning the documentation repository lets you get a copy of the source of the ONETEP documentation (so, .rst
files). If you are just interested in the compiled documentation (.pdf or .html), you might be better off just visiting
https://onetep.org/resources/documentation.

Cloning the tutorials repository lets you get a copy of the source of the ONETEP tutorials (so, .rst files). If you
are just interested in the compiled tutorials (.pdf or .html), you might be better off just visiting https://onetep.org/
resources/tutorials.

Cloning the utils-devel repository lets you get a copy of the additional utilities useful mostly for developers, but
ONETEP users may benefit from having a copy too. ONETEP will offer to clone this repository for you after you
compile it, so perhaps it’s not worth it to clone it manually.

2.6. Cloning the official ONETEP repository 11
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Think of the above clones as of your personal copies of, respectively, the documentation source, the source for the
tutorials and the utilities. This copy/copies will reside locally, on your disk. See also Fig. 2.1, the left-hand side.

To clone the documentation repository, go to your terminal and issue:

git clone https://github.com/onetep-devel/documentation.git

To clone the tutorials repository, go to your terminal and issue:

git clone https://github.com/onetep-devel/tutorials.git

To clone the utils-devel repository, go to your terminal and issue:

git clone https://github.com/onetep-devel/utils-devel.git

When prompted for username, enter your GitHub username. When prompted for password, type in (or preferably paste)
your GitHub personal access token, not your GitHub password.

See Storing GitHub personal access token (PAT) in git for instructions on how to have git store your credentials so
that you don’t have to type or paste them each time you want to perform an action on your repository.

As a User you don’t have permissions to write to the repository. Attempts to do so will finish with:

remote: Write access to repository not granted.

2.8 Forking the official ONETEP repository
This procedure is only meant for Contributors. Users should go to Cloning the official ONETEP repository instead.

Forking the ONETEP repository lets you get a copy of the ONETEP distribution, including the source code, the quality-
check (QC) tests, and essential scripts. Think of this fork as of your personal copy of ONETEP. This copy will reside
on GitHub. You will be able to clone this copy, to get a personal copy of ONETEP locally on your disk. See Fig. 2.1,
the parts marked with Contributors.

To fork the official repository, assuming you have been given access (see Getting access to the ONETEP repository),
follow these steps:

1. Go to https://github.com/onetep-devel/onetep.

2. Click on Fork, top right.

3. Choose a repository name for your fork. A good name is onetep_ followed by your initials, e.g. for Jane Doe,
you could choose onetep_jd. The fork will be created in your private workspace, so there’s no need to worry
about any conflicts with someone else who has the same initials.

4. Add a description, e.g. Jane’s fork of ONETEP on GitHub.

5. Uncheck the check-box copy the master branch only.

6. Click Create fork.

You now have your private fork, accessible via something like https://github.com/JaneDoe/onetep_jd.

2.9 Forking the documentation, tutorials or utils-devel repositories
The procedure is the same as Forking the official ONETEP repository, except onetep should be replaced with
documentation, tutorials or utils-devel.
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2.10 Cloning your private ONETEP fork
This procedure is only meant for Contributors. Users should go to Cloning the official ONETEP repository instead.

Cloning your ONETEP fork lets you get a local copy of the ONETEP distribution, including the source code, the
quality-check (QC) tests, and essential scripts. See also Fig. 2.1, the left-hand side.

To clone your ONETEP fork, follow these steps:

1. Go to your GitHub profile – something like https://github.com/JaneDoe, where JaneDoe would be replaced by
your GitHub user name.

2. Click your profile picture (top right) and choose Your repositories from the drop-down list.

3. Click the name of your fork that you created earlier, something like onetep_jd. You are now on the GitHub
page of your private fork.

4. Click the green <> Code button.

5. Click the Copy icon (looks like two overlapping squares) to the right of the address.

6. Go to your terminal, change to a directory where you want your clone to reside, and type git clone, followed
by a space. Paste the address copied earlier. You should get something like:

git clone https://github.com/JaneDoe/onetep_jd.git

for our Jane Doe example.

7. When prompted for username, enter your GitHub username. When prompted for password, type in (or preferably
paste) your GitHub personal access token, not your GitHub password.

You should now have your personal clone.

See Storing GitHub personal access token (PAT) in git for instructions on how to have git store your credentials so
that you don’t have to type or paste them each time you want to perform an action on your repository.

You are now ready to develop the code inside your private ONETEP fork – see Development within a fork for more
details.

As a Contributor you have permissions to write (push) to the repository from your clone. The commits will, of course,
wind up in your personal fork. To get them to the official ONETEP repository, follow the steps in Creating a pull
request.

2.11 Cloning your private documentation, tutorials or utils-devel
fork

The procedure is the same as Cloning your private ONETEP fork, except onetep should be replaced with
documentation, tutorials or utils-devel.

2.12 Development within a fork
This procedure is only meant for Contributors.

Develop within your local clone on your disk! Any changes to the code should be made in your local clone. Once you
are satisfied with them, you can commit them, and push them to your private fork. If you want them to become a part
of official ONETEP, you should then create a pull request from your private fork to the official repository. Here’s how
to do that: Creating a pull request.

Whether you are a Contributor or a User, you might want to update your repository with any latest changes that might
have occurred in the official repository. Users might be interested in recent bug fixes or new functionality, Contributors

2.10. Cloning your private ONETEP fork 13
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will want to update their copy before committing any changes of their own. Keep your fork up-to-date with changes in
the official repository by regularly merging with the official repository, i.e.

• Add the official repository as a remote to your local repository (only once):

git remote add github_official https://github.com/onetep-devel/onetep.git

If you are developing documentation, tutorials or the utilities, replace onetepwith documentation, tutorials
or utils-devel in the above.

• Fetch changes from the official repository (each time):

git fetch github_official

• Merge changes from the official repository into your currently checked-out branch (each time):

git merge github_official/master

It is often the case that make cleanall must be issued after merging, the script for cascade avoidance used when
making ONETEP can get confused as to what needs to be rebuilt after a git merge.

Remember to commit your changes regularly and push these to your fork on GitHub so that they are backed up, e.g.
git push origin <branch_name> where <branch_name> is the name of the git branch you are working on.

You can choose how you develop in your private fork as the branches, tags etc. that you create in the fork do not affect
the official repository.

You can apply bugfixes to release branches in your private fork, too, i.e.

• Fetch changes from the official repository:

git fetch github_official

• Check out a release branch:

git checkout academic_release_v5.0

• Commit your bugfix to the branch and push to your changes back to GitHub.

The above text describes a basic git workflow within a private fork. If you are not familiar with git, or source
code version control in general, it may be worthwhile to spend some time working through a tutorial or guide before
proceeding with any serious ONETEP development. There are numerous resources available online. Here is a small
selection:

• [Official Git (git-scm.com) documentation](https://git-scm.com/doc)

• [Software carpentry: “Version control with Git”](https://swcarpentry.github.io/git-novice/)

More experienced git users may prefer to use a different process. You may use whatever workflow you like in your
own private fork, since your changes will be selectively applied to the official repository via the pull request process.

2.13 Creating a pull request
This procedure is only meant for Contributors.

When your changes are ready for contributing to the official ONETEP repository, you need to create a pull request via
the GitHub web interface.

Before you make your pull request:

14 Chapter 2. Working with GitHub

https://git-scm.com/doc
https://swcarpentry.github.io/git-novice/


ONETEP Documentation, Release 7.1.8

• Make sure that your changes satisfy the code quality requirements (see Advice for Contributors), or your
pull request will be rejected.

• Make sure that your code is up-to-date with official ONETEP repository – use the instructions in Develop-
ment within a fork to merge changes into the branch you are working on in your fork.

Once you are sure your code satisfies the requirements and is synchronized with the official repository, follow these
steps.

1. Open the GitHub project page for your private fork in a web browser. This will be something like https://github.
com/JaneDoe/onetep_jd.

2. Click Contribute below and to the left of the green <> Code button.

3. Click Open pull request.

4. Edit the title and description of what you want to commit.

5. Choose Reviewer(s) on the right. Read the two notes below.

6. Click Create pull request.

Your pull request has now been created. You should wait for the Reviewer(s).

• If they have issues with your proposed changes, they will let you know and maybe suggest how to fix them. There
is no need to create a new pull request in that case. You can apply the requested changes directly to the branch
in your private fork for which the pull request was issued and they will be automatically added your pull request.

• If they have no objections to your pull request, you should get a notification that it has been merged. The merging
is done by the Reviewer.

ð Note

It looks like at our settings it is not possible to have more than one reviewer, unless we upgrade to Pro, Team or
Enterprise plan, see: https://github.com/orgs/community/discussions/23978

ð Note

Also, unless you are one of the repository Owners, you will simply not see the option to select a Reviewer. This
is a GitHub feature meant to prevent any spamming from people who forked public repositories. Intead of adding
a Reviewer, tag the person or people you’d like to review your change in the text that you enter in the Leave a
comment box. For instance, type @JacekDziedzic to add Jacek as a reviewer – he will then get a notification once
you submit the pull request.

If the pull request is for the documentation or tutorials, once it is merged, the changes will be deployed automatically to
the ONETEP website (a documentation-deploy or tutorials-deploy GitHub Action). When the pull request
is submitted, this step will be skipped (because you have not been authorised to make the changes at this point yet). It
will only be run following the merge.

2.14 Reviewing and merging pull requests
This procedure is only meant for Reviewers on pull requests.

To review and merge a pull request on which you are a Reviewer, follow these steps.

1. Go to the ONETEP official repository, https://github.com/onetep-devel/onetep.

2. Click Pull requests at the top.

2.14. Reviewing and merging pull requests 15
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3. Locate the pull request in question and click on it.

4. If you have comments, you can type them in the Leave a comment text field and click Comment.

5. To finish the review, click the green button Add your review at the top right.

6. If you would like to reject this pull request, click Close pull request at the bottom. This will close the pull
request. You can later reopen it.

7. If you would like to merge this commit, click the arrow near the green button (the button caption may vary, e.g.
Merge pull request or Squash and merge), and choose Squash and merge.

8. Click Squash and merge.

9. Click Confirm squash and merge.

2.15 Simple changes to documentation or tutorials
If you have a small change to the documentation or tutorials, for instance you want to add or change a single file or
several files, and you’re an Owner, you can just upload the new/updated files straight from the GUI. Make sure you
are logged in, then choose Add File (to the left of the green button). Follow the instructions on screen. Once you’re
done, this will create a commit.

2.16 Storing GitHub personal access token (PAT) in git
It’s likely that you will soon find typing or pasting the GitHub personal access token any time you want to perform an
operation on your repository cumbersome. To avoid having to do this, go to your local repository clone and, from the
command line, issue the following command:

git config credential.helper store

The next time you are prompted for a password will be the last time – git will store it for you.

2.17 Adding a new user to the repository
This section is meant for Owners. It explains how to add users to the ONETEP GitHub repository.

Note that only the onetep repository is private. Anyone can access the public repositories of the organisation
onetep-devel (which are documentation, tutorials and utils-defvel). To add a user to the onetep reposi-
tory, you yourself must be a user in the Owner role.

To add a new user, follow these steps:

1. Go to the organisation level: https://github.com/onetep-devel.

2. Choose People at the top, then Invite member.

3. Type in the invitee’s GitHub username or email address, click Invite.

4. Choose a suitable Role. To add a typical user, just leave Member selected. To add a privileged user, switch to
Owner. Click Send Invitation.

5. The invitee should now appear in the Invitations pane on the left.

6. That’s it. Once the invitee accepts the invitation, they will be visible in the People menu.
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3.1.1 What is being calculated?
When the atomic solver is used [Ruiz-Serrano2012], a Kohn-Sham DFT calculation is performed for a “pseudoatom”.
This means that the pseudopotential of a single isolated ion is used as the external potential, and the single-electron
Kohn-Sham states are solved self-consistently, for a given XC functional. The resulting states can be expected to
form an ‘ideal’ atomic orbital basis for a given calculation [Soler2002], [Artacho1999], [Blum2009], [Tarralba2008],
[Chen2010]. In practice they are a good starting point for initial NGWFs, or a passable fixed basis for calculations
without NGWF optimisation, in which context they should be at least comparable to the basis sets generated in SIESTA,
for example (though note that a high cutoff energy is required for accurate representation on the grid in such cases).

The pseudoatomic orbitals we are looking for solve the Kohn-Sham equation:

�̂�KS𝜓𝑛(r) = 𝜖𝑛𝜓𝑛(r)

where

�̂�KS = −1

2
∇2 + 𝑉loc(𝑟) +

∑︁
𝑖

|𝑝𝑖⟩𝐷𝑖𝑗⟨𝑝𝑗 |

is the Hamiltonian in terms of kinetic, local potential and nonlocal potential contributions. For a norm conserving
pseudopotential the matrix 𝐷𝑖𝑗 is diagonal and there is one term per angular momentum channel, so there is generally
only one contributing nonlocal projector for each wavefunction. In PAW and USPs, there may be more, and nonzero
cross-terms 𝐷𝑖𝑗 for 𝑖 ̸= 𝑗. Because it is a spherical potential, solutions of this form of the Kohn-Sham equation are
easily separable into an angular part, solved by the spherical harmonics (𝑌𝑙𝑚(r̂), or equivalently the real spherical
harmonics 𝑆𝑙𝑚(r̂)) multiplied by radial part, which we will be solving explicitly in terms of a basis.

The atomic orbitals are solved in a sphere of radius 𝑅𝑐. The most appropriate basis to use therefore consists of nor-
malised spherical Bessel functions of given angular momentum 𝑙. The radial parts of the basis functions, 𝐵𝑙,𝜈(𝑟)
are

𝐵𝑙,𝜈(𝑟) = 𝑗𝑙(𝑞𝑙,𝜈𝑟) /
[︁ ∫︁ 𝑅𝑐

0

|𝑗𝑙(𝑞𝑙,𝜈𝑟)|2𝑟2𝑑𝑟
]︁ 1

2

,

17



ONETEP Documentation, Release 7.1.8

with 𝑞𝑙,𝜈 such that 𝑞𝑙,𝜈𝑅𝑐 are the zeros of the spherical Bessel functions. Thence 𝐵𝑙,𝜈(𝑅𝑐) = 0 and∫︀ 𝑅𝑐

0
|𝐵𝑙,𝜈(𝑟)|2𝑟2𝑑𝑟 = 1 for all 𝜈. The basis would be complete if 𝜈 were infinite: in practice it must be truncated, and

the number of functions included is determined by a kinetic energy cutoff𝐸cut. The criterion 1
2𝑞

2
𝑙,𝜈 < 𝐸cut determines

the largest 𝜈 for each 𝑙.

In the pseudoatom calculation we are therefore calculating Kohn-Sham states of the form

𝜓𝑛(r) =
∑︁
𝜈

𝑐𝑛,𝜈 𝐵𝑙𝑛,𝜈(𝑟)𝑆𝑙𝑛𝑚𝑛
(r̂) ,

which have eigenvalues 𝜖𝑛 and occupancies 𝑓𝑛 which include spin-degeneracy. The occupancies are fixed, and de-
termined before the main calculation, such that they sum to the number of valence electrons. Spherical symmetry of
the density is assumed, so the occupancies of all members of a given set of 𝑚-degenerate orbitals are always equal —
and in fact in practice the 𝑚 states for a given 𝑙, 𝑛 pair are amalgamated into one state with 𝑓𝑛 summed over all the
degenerate 𝑚’s. For example, for a nitrogen ion with valence configuration 2𝑠2 2𝑝3, we would have 𝑓2𝑠 = 2, 𝑓2𝑝 = 3.
For this, we therefore need to find the lowest-energy self-consistent eigenstate of each of 𝑙 = 0 and 𝑙 = 1. Henceforth
we will only consider the radial dependence 𝜓𝑛(𝑟). All radial quantities will be considered to have been integrated
over solid angle already, so factors of 4𝜋 are omitted and

∫︀
|𝜓𝑛(𝑟)|2𝑟2𝑑𝑟 = 1 for a normalised orbital.

We define the local potential through

𝑉loc(𝑟) = 𝑉psloc(𝑟) + 𝑉𝐻 [𝑛](𝑟) + 𝑉𝑋𝐶 [𝑛](𝑟) + 𝑉conf(𝑟)

where for a spherical charge distribution 𝑛(𝑟) =
∑︀

𝑛 𝑓𝑛|𝜓𝑛(𝑟)|2, the Hartree potential is given by

𝑉𝐻(𝑟) =
1

𝑟

∫︁ 𝑟

0

𝑛(𝑟′)𝑟′2𝑑𝑟′ +

∫︁ ∞

𝑟

𝑛(𝑟′)𝑟′ 𝑑𝑟′ .

and the XC potential is 𝑉𝑋𝐶 [𝑛](𝑟) = 𝜕𝐸𝑋𝐶 [𝑛]
𝜕𝑛(𝑟) . 𝑉conf(𝑟) is an optional confining potential whose specific form will be

discussed later [Blum2009].

For each 𝑙 we can define the Hamiltonian matrix

𝐻 𝑙
𝜈,𝜈′ =

∫︁ 𝑅𝑐

0

𝐵𝑙,𝜈(𝑟)
[︁
�̂�𝐵𝑙,𝜈′(𝑟)

]︁
𝑟2𝑑𝑟

and the overlap matrix

𝑆𝑙
𝜈,𝜈′ =

∫︁ 𝑅𝑐

0

𝐵𝑙,𝜈(𝑟)𝐵𝑙,𝜈′(𝑟)𝑟2𝑑𝑟

We then solve the secular equation

H𝑙.c𝑛 = 𝜖𝑛S
𝑙.c𝑛

to give the coefficients 𝑐𝑛,𝜈 which describe the orbitals. The orbitals are generated on the real-space grid and density
mixing with a variable mixing parameter 𝛼 is then used until self-consistency is obtained. The result is deemed to be
converged once a) the Harris-Foulkes estimate of the total energy (the bandstructure energy) matches the total energy as
determined from the density to within a given tolerance (10−5 Ha) and the energy has stopped changing each iteration,
to within a given tolerance (10−7 Ha).

3.1.2 Performing a Calculation with the Pseudoatomic Solver
The atomic solver is the default approach to NGWF initialisation, so if you do not need to change any settings for any
species, simply omit the %block species_atomic_set block.

If there are any tweaks to be made to the default, this block is required, and for each element symbol the string “SOLVE”
should appear in the entry. If you want to use automatic initialisation of the number of NGWFs, then specify that to
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be -1 in the species block. The code will attempt to determine how many orbitals to use, which orbitals constitute
the valence, and what their default occupancies should be. To illustrate what will happen, we present some simple
examples.

Let us imagine setting up a calculation with only nitrogen, for which 𝑍atom = 7 and 𝑍ion = 5. The valence manifold
consists of 4 NGWFs of radius 𝑅𝑐 = 8.0 per atom, so we would have the following blocks in our input file:

%block species

N N 7 4 8.0

%endblock species

%block species_atomic_set

N “SOLVE”

%endblock species_atomic_set

Note that because we may well want to add extra options to this string later, it’s best to always use the “” quotes around
SOLVE. These settings will activate the pseudoatomic solver and it will attempt to guess a default configuration for
the atom. Since 𝑍ion = 5, the code will count back five electrons from the end of the default neutral atom occupancy,
which is 1𝑠2 2𝑠2 2𝑝3, and will discover that the valence states are 2𝑠2 2𝑝3. Since we have asked for 𝑁 = 4 NGWFs,
the solver will then count forward from the start of the valence states and determine that by including the whole first
set of 𝑠 and 𝑝 states it has enough to span the valence space and create four orbitals (and thus four NGWFs). The solver
will therefore solve for one state with 𝑙 = 0, 𝑓 = 2 and one state with 𝑙 = 1, 𝑓 = 3, all with radius 𝑅𝑐 = 8.0, and from
these states will produce one 𝑠-like NGWF and the three degenerate 𝑝𝑥, 𝑝𝑦 and 𝑝𝑧 NGWFs.

A slightly more complex example would be if we were generating orbitals for iron (𝑍atom = 26, 𝑍ion = 8):

%block species

Fe Fe 26 9 10.0

%endblock species

%block species_atomic_set

Fe “SOLVE”

%endblock species_atomic_set

This time, to find the default configuration, the solver initialisation routines will count back 8 electrons from the neutral
atom configuration of 1𝑠2 2𝑠2 2𝑝6 3𝑠2 3𝑝6 3𝑑6 4𝑠2 and thus will determine that the valence states are 3𝑑6 4𝑠2. However,
this time we have asked for 9 NGWFs, so it will then count forward from 3𝑑, include the fivefold-degenerate lowermost
𝑑-like state and the lowest 𝑠-like state. This only makes six, so it then will also have to include the threefold-degenerate
4𝑝-like state. The solver will have to solve for one unoccupied 𝑝-like orbital, which will have 𝑓 = 0 throughout the
calculation.

Controlling the configuration

The default neutral-atom configurations for all the elements up to 𝑍 = 92 are included in the code, and will be used by
default to generate the configuration. However, it is also possible to override these default configurations. For example,
to generate NGWFs for iron in the 3+ state, we might want to set the occupancies to 3𝑑5 4𝑠0. To do this we use the
“conf=” directive after the SOLVE string:

%block species_atomic_set
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Fe “SOLVE conf=3d5 4s0”

%endblock species_atomic_set

Any terms in the configuration which are not overridden are left at their default values. Another example might be if
we wanted to force the partial occupation of more higher-lying states than would otherwise be occupied for the neutral
atom:

%block species_atomic_set

C “SOLVE conf=2s1.5 2p2.5”

%endblock species_atomic_set

Note that the solver counts through the configuration terms strictly in the order 𝑛, 𝑙, i.e. 𝑛 is looped over outermost,
then 𝑙 = 0 to 𝑙 = 𝑛−1 for each 𝑛 innermost. This means that sometimes a little thought is required to get the terms one
actually wants, and not spurious extra ones. For example, if we wanted to run a calculation of oxygen with 9 NGWFs
per atom, what we probably wanted would be to run with 1 𝑠-like NGWF, 3 𝑝-like NGWFs and 5 𝑑-like NGWFs.
However, this is not by default what one will get if one asks for

%block species

O O 8 9 9.0

%endblock species

%block species_atomic_set

O “SOLVE”

%endblock species_atomic_set

This will identify 2𝑠2 2𝑝4 as the valence orbitals, and counting forward will identify 2𝑠, 2𝑝, 3𝑠, 3𝑝 and just 1 of the 5
degenerate 3𝑑 states as the NGWFs required. Therefore, we must instruct the atomsolver to ignore the unwanted excited
3𝑠 and 3𝑝 terms. We do this with an “X”, which instructs the solver to knock out this term:

%block species_atomic_set

O “SOLVE conf=2s2 2p4 3sX 3pX 3d0”

%endblock species_atomic_set

Strictly speaking, the 2𝑠, 2𝑝 and 3𝑑 strings are not needed, as they are the default values anyway, but they are left in
for clarity. I find it advisable, so that I can keep track of the terms which will generate the NGWFs, to add explicitly
the terms with zero occupancy to the conf string.

Generating larger, non-minimal bases

ONETEP is generally used to create an in-situ-optimised, minimal basis (eg 4 NGWFs/atom for C, N, O etc). However,
it is also possible to fix the NGWFs and run with a much larger, unoptimised basis, in a manner akin to other DFT
codes designed for large-scale simulations (eg SIESTA). One would then normally want to use multiple NGWFs for
each angular momentum channel corresponding to the valence orbitals. This is known as using a “multiple-zeta” basis
set, where zeta refers to the radial part of the valence atomic orbitals. For example, a “triple-zeta” basis for carbon
would have 3 𝑠-like functions and 3 of each of 𝑝𝑥, 𝑝𝑦 , and 𝑝𝑧-like functions. There are two approaches to generating
these extra radial functions. This simplest is just generate the higher-lying orbitals of a given angular momentum. For
carbon, for example, a double-zeta basis in this scheme would include 3𝑠 and 3𝑝-like states. This approach, however,
is not very quick to converge with basis size.
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It is often better to apply the commonly-used “split-valence” approach. This allows the orbitals that have been gener-
ated to be “split” into multiple functions, so as to generate so-called “split-valence multiple-zeta” basis sets. In this
formalism, one function 𝑓(𝑟) can be split into two functions 𝑔1(𝑟) and 𝑔2(𝑟) according to the following:

1. A matching radius 𝑟𝑚 is chosen: for 𝑟 > 𝑟𝑚, we set 𝑔2(𝑟) = 𝑓(𝑟). For 𝑟 ≤ 𝑟𝑚, we set 𝑔2(𝑟) = 𝑟𝑙(𝑎𝑙 − 𝑏𝑙𝑟
2),

where 𝑎𝑙 and 𝑏𝑙 are chosen such that 𝑔2(𝑟𝑚) = 𝑓(𝑟𝑚) and 𝑔′2(𝑟𝑚) = 𝑓 ′(𝑟𝑚).

2. The other function, 𝑔1(𝑟), is set to 𝑓(𝑟) − 𝑔2(𝑟), so 𝑔1(𝑟) = 0 for 𝑟 ≥ 𝑟𝑚.

3. Both functions are renormalised, so
∫︀ 𝑅𝑐

0
|𝑔1(𝑟)|2𝑟2𝑑𝑟 = 1 and

∫︀ 𝑅𝑐

0
|𝑔2(𝑟)|2𝑟2𝑑𝑟 = 1.

Splitting of a term is activated by adding a colon after the term and specifying the “split norm” value. This is the
fraction 𝑝 of the total norm of the orbital which is beyond the matching radius 𝑟𝑚, such that

∫︀ 𝑅𝑐

𝑟𝑚
|𝑓(𝑟)|2𝑟2𝑑𝑟 = 𝑝. If

this colon is present, the solver will take into account the total number of orbitals which will result from this term after
splitting, when counting forward in the configuration terms to determine which orbitals to solve. For example, if we
wished to generate a Double-Zeta Polarisation (DZP) basis for oxygen (2× 1× 𝑠, 2× 3× 𝑝,1× 5× 𝑑), where the last
15% of the norm was matched for the 𝑠 and 𝑝-orbitals, we would use the following:

%block species

O O 8 13 9.0

%endblock species

%block species_atomic_set

O “SOLVE conf=2s2:0.15 2p4:0.15 3sX 3pX 3d0”

%endblock species_atomic_set

So that you can tell that it is happening, the code will output a message along the following lines when splitting a given
orbital.

Splitting orbital 1, splitnorm= 0.150000000

Splitting orbital 1, splitnorm= 0.060000000

The result of the splitting can be viewed in the “initial_rad_ngwf_xx” files.

Obtaining Polarisation Orbitals through Perturbation

As well as including more flexibility for the valence orbitals, in the form of multiple-zeta basis sets, one frequently also
wants to expand the basis by extending it to higher angular momentum channels. This can be done by simply increasing
the number of NGWFs requested and ensuring through the ’conf=’ string that the extra functions obtained are of the
right angular momentum. However, the resulting high-𝑙 states tend to be unbound in the free atom, and therefore do
not necessarily add anything particularly useful to the basis.

There is an alternative means to generate higher-𝑙 states, using perturbation theory. In this, one effectively applies an
electric field to the valence states of angular momentum 𝑙 and polarises them, resulting in a set of states of angular
momentum 𝑙+ 1. Imagine we have an orbital 𝜓0(r) of angular momentum 𝑙, 𝑚 which is an eigenstates of the original
Hamiltonian �̂�0 with eigenvalue 𝜖0:

𝜓0(r) =
∑︁
𝜈

𝑐0,𝜈 𝐵𝑙,𝜈(𝑟)𝑆𝑙𝑚(r̂) .

We wish to polarise this orbital by applying an electric field ℰ in the 𝑧-direction:

�̂�1 = ℰ𝑟 𝑆10(r̂) ,
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(since 𝑆10(r̂) = 𝑧/𝑟). Perturbing 𝜓0 with �̂�1 gives us no shift in energy to first-order, since the perturbation is an odd
multiplicative function of 𝑧, meaning 𝜖1 = 0. What about the change in the wavefunction? This obeys

(�̂�0 − 𝜖0)𝜓1(r) = −(�̂�1 − 𝜖1)𝜓0(r)

In principle, 𝜓1(r) could have any angular momentum components, but we can see that in practice it only contains
𝐿 = 𝑙 ± 1, since the dipole selection rule excludes all other channels. We already have 𝑙 − 1 states in our basis, so we
conclude that 𝜓1(r) need only include 𝑙 + 1, and we can expand 𝜓1 in terms of the 𝑙 + 1 basis functions:

𝜓1(r) =
∑︁
𝜈

𝑐1,𝜈 𝐵𝑙+1,𝜈 𝑆𝑙+1,𝑚(r̂)

Therefore we can generate a shifted Hamiltonian

𝐻 𝑙+1
𝜈,𝜈′ =

∫︁ 𝑅𝑐

0

𝐵𝑙+1,𝜈(𝑟)
[︁
(�̂� 𝑙+1 − 𝜖0)𝐵𝑙+1,𝜈′(𝑟)

]︁
𝑟2𝑑𝑟 , (3.1)

and the components of the RHS of Eq. (3.1)

𝐷𝜈 = −
∫︁ 𝑅𝑐

0

𝐵𝑙+1,𝜈(𝑟)𝑟𝜓0(𝑟)𝑟2𝑑𝑟 .

To solve for 𝑐1,𝜈 we just need to invert 𝐻 𝑙+1
𝜈,𝜈′and apply it to 𝐷𝜈 , and then renormalise the result to have a norm of 1.

In practice, polarisation of a given configuration term of angular momentum 𝑙, to form a perturbative polarisation
orbital for 𝑙 + 1, is achieved by adding “|P” to the term, for example:

%block species

O O 8 13 9.0

%endblock species

%block species_atomic_set

O “SOLVE conf=2s2:0.15 2p4:0.15|P”

%endblock species_atomic_set

So that you can tell that it is happening, the code will output a message along the following lines when polarising a
given orbital:

Polarising orbital 1 to generate l= 2 function (orbital 3)

Again, the result can be viewed by plotting the relevant “initial_rad_ngwf_xx” file.

Overriding radii

By default, the cutoff radius used for all the orbitals of an atom is the same𝑅𝑐 as defined in the %block species entry
for that element. However, we can override this, either for all orbitals, or for certain angular momentum channels.

To override the radius for all channels, for example to 7.0𝑎0, would we add the flag “R=7.0” to the SOLVE string:

%block species_atomic_set

O “SOLVE conf=2s2:0.15 2p4:0.15 3sX 3pX 3d0 R=7.0”

%endblock species_atomic_set
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Or leave the default values for all other channels, but override the 𝑑-channel only to 5.0𝑎0, we would use

%block species_atomic_set

O “SOLVE conf=2s2:0.15 2p4:0.15 3sX 3pX 3d0 Rd=5.0”

%endblock species_atomic_set

Adjusting confining potentials

By default, a confining potential is applied, of the form:

𝑉conf(𝑟) = 𝑆 exp[−𝑤𝑙/(𝑟 −𝑅𝑐 + 𝑤𝑙)]/(𝑟 −𝑅𝑐)
2

where 𝑆 is the maximum height of the confining potential (at 𝑟 = 𝑅𝑐), and 𝑤𝑙 is the width of the region over which it
is applied. By default, 𝑆 = 100 Ha, and𝑤𝑙 = 3.0𝑎0 for all 𝑙-channels used. These can also be overridden, either all at
once or for specific 𝑙-values in the case of 𝑤.

For example, to set no confining potential on the confined 𝑑-orbitals in Zinc, but to keep the default one on all the other
orbitals, we could set 𝑤𝑑 = 0:

%block species_atomic_set

Zn “SOLVE conf=3d10 4s2 Rd=5.0 wd=0.0”

%endblock species_atomic_set

Or to turn off confinement potentials entirely, and generate𝑅𝑐 = 15.0𝑎0 orbitals to match those generated by CASTEP’s
atomsolver (this should allow direct comparison of energies, given suitable tweaking of the energy cutoffs so that they
exactly match:

%block species_atomic_set

O “SOLVE R=15.0 S=0.0”

%endblock species_atomic_set

Note that there can be problems with convergence for certain choices of confining potential. In particular, if you apply
different confining potentials to different occupied orbitals, there will be problems obtaining agreement between the
Harris-Foulkes estimator and the actual total energy - because the band energy will incorporate the different confining
potentials, but the total energy cannot. The confining potential on angular momentum channels with no occupied
orbitals can therefore be whatever you like, but those of occupied orbitals must all match. The exception to this is if
the cutoff radius ment of one channel is less than the onset radius for the others. In this case, there is no need to apply
a confinement to the lower-cutoff channel at all (eg in the example above for Zinc).

Initial Guess Density: Setting initial charges and spins

The atomsolver solutions are by default also used to provide an initial guess for the valence electron density. This is
used to generate the initial Hamiltonian, which determines the occupation of the orbitals via Palser-Manolopoulos or
other kernel optimisation schemes. Therefore it is important that this initial density is a reasonably good guess to the
real density.

A superposition of atomic densities is usually fine for neutral systems without large magnetic moments. Sometimes,
however, one needs to adjust the charges and spins of this initial density. It appears to be a rather bad idea to actually
adjust the orbital occupations of the pseudoatoms self-consistently: it becomes impossible to disentangle the effect of
changing the orbital from that of changing the density.
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A better approach, therefore, is to retain the same pseudoatomic solutions for the neutral atom, but adjust the orbital
occupations only at the point where they are used to generate the density.

This can be done by specifying “INIT CHARGE=X SPIN=Y” in the SOLVE string. Either CHARGE or SPIN can be
omitted if they are not required. For example, for a manganese ion with charge +3 and spin 4, we might set

%block species_atomic_set

Mn “SOLVE conf=3d5 4s2 wd=7.0 INIT SPIN=4 CHARGE=+3”

%endblock species_atomic_set

The default occupation for the neutral atom is 3𝑑5 4𝑠2. However, we ask it to apply a charge of +3, and this will remove
occupation number from the orbitals with the highest energy until the right charge is obtained. In this case the resulting
occupation will be 3𝑑4 4𝑠0. Next, the spin is applied, resulting in 3𝑑4↑ 3𝑑0↓. Note that the charge is applied first, followed
by the spin.
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3.2.1 Spin-polarisation in ONETEP
TBC

3.2.2 k-points and Brillouin zone sampling in ONETEP
ONETEP now supports k-point sampling in the Brillouin zone. By utilising the k-point sampling technique, the peri-
odicity of the system can be exploited to reduce the computational cost of the calculation and small systems (from unit
cells upwards) can be efficiently simulated.

The k-point sampling technique is implemented in two modes: the plane-wave (PW) mode and the tight-binding (TB)
mode. The default behaviour in ONETEP is to assume the system is periodic but that the simulation cell is large enough
that k-point sampling is not required. In order to launch a calculation on a simulation cell where this is not the case, so
k-point sampling is required, the user must first choose between these modes as appropriate to the periodicity of their
system, and then specify a grid of k-points on which the calculation is to be performed.
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3.2.3 Plane-wave mode (PW) mode
In the plane-wave (PW) mode, the k-dependent Bloch functions are expressed using cell-periodic functions and and
the Bloch phase factor. The cell-periodic functions are further expanded in terms of NGWFs.

Specifically, to satisfy the minimum image convention (i.e., no NGWF should overlap with its periodic images), the
localisation constraint is relaxed along the directions where k-point sampling is applied. Since the NGWFs are ex-
pressed using psinc functions, by relaxing the localisation constraint, NGWFs are essentially expressed using plane
waves (hence the name “plane-wave mode”).

Theory

The Schrödinger equation (or in the case of DFT, the Kohn-Sham equation) for a Bloch eigenstate 𝜓𝑛,k is given by

�̂�𝜓𝑛,k(r) = 𝜖𝑛,k𝜓𝑛,k(r). (3.2)

where k labels the k-point, 𝑛 the band number. Immediately we can see that we need to solve this equation separately
at each k-point, hence we need to have seperate representations of any quantities arising from 𝜓𝑛,k for each k-point.

The most generic form of the Bloch functions is written as,

𝜓𝑛,k(r) = 𝑒𝑖k·r𝑢𝑛,k(r), (3.3)

where 𝑢𝑛,k(r) is a function with the periodicity of the unit cell, i.e.,

𝑢𝑛,k(r) = 𝑢𝑛,k(r + R),

and R is a Bravais lattice vector.

Inserting (3.3) into (3.2), we get

�̂�𝑒𝑖k·r𝑢𝑛,k(r) = 𝜖𝑛,k𝑒
𝑖k·r𝑢𝑛,k(r).

Premultiplying both sides by 𝑒𝑖k·r, we get

𝑒−𝑖k·r�̂�𝑒𝑖k·r𝑢𝑛,k(r) = 𝜖𝑛,k𝑢𝑛,k(r). (3.4)

If we introduce the k-dependent Hamiltonian operator �̂�(k),

�̂�(k) = 𝑒−𝑖k·r�̂�𝑒𝑖k·r,

(3.4) can then be written as

�̂�(k)𝑢𝑛,k(r) = 𝜖𝑛,k𝑢𝑛,k(r). (3.5)

In ONETEP we use a set of k-dependent NGWFs ({𝜑k𝛼}) as our support functions, so the cell-periodic part of the Bloch
wavefunction 𝑢𝑛,k can be written as

𝑢𝑛,k(r) =
∑︁
𝛼

𝑐𝛼𝑛,k𝜑
k
𝛼(r),

where 𝑐𝛼𝑛,k is a non-unitary rotation matrix that rotates the NGWFs (see TB note).

Expanding 𝑢𝑛,k using in terms of NGWFs (which, as we will see later will need to be “extended” NGWFs along
periodic directions), (3.5) can be expressed as

�̂�(k)𝑢𝑛,k(r) =
∑︁
𝛽

𝑐𝛽𝑛,k�̂�(k)𝜑k𝛽(r) = 𝜖𝑛,k
∑︁
𝛽

𝑐𝛼𝑛,k𝜑
k
𝛽(r) (3.6)
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If we multiply both sides of (3.6) by 𝜑k*𝛼 (r), and integrate over r, we get∑︁
𝛽

𝑐𝛽𝑛,k

∫︁
𝜑k*𝛼 (r)�̂�(k)𝜑k𝛽(r)𝑑r =

∑︁
𝛽

𝑐𝛽𝑛,k𝜖𝑛,k

∫︁
𝜑k*𝛼 (r)𝜑k𝛽(r)𝑑r. (3.7)

In matrix notation, (3.7) can be written as∑︁
𝛽

𝐻𝛼𝛽(k)𝑐𝛽𝑛,k = 𝜖𝑛,k
∑︁
𝛽

𝑐𝛽𝑛,k𝑆
k
𝛼𝛽 , (3.8)

where the Hamiltonian matrix 𝐻 elements are:

𝐻𝛼𝛽(k) =

∫︁
𝜑k*𝛼 (r)�̂�(k)𝜑k𝛽(r)𝑑r.

and the overlap matrix 𝑆 elements are:

𝑆𝛼𝛽(k) =

∫︁
𝜑k*𝛼 (r)𝜑k𝛽(r)𝑑r.

(3.8) is the generalized Kohn-Sham equation under the basis of 𝜑. If 𝜑 were simply plane waves, S would be the
identity, and we could return to the canonical expression of the Kohn-Sham equation in the plane-wave basis:∑︁

𝛽

𝐻𝛼𝛽(k)𝑐𝛽𝑛,k = 𝜖𝑛,k𝑐
𝛼
𝑛,k

It is worth nothing that in the plane-wave basis the explicit k-dependence only exists in the Hamiltonian matrix and
the k-index of eigenvectors is the result of solving such a k-dependent Hamiltonian. In the NGWF basis, there is also
k-dependence in the overlap matrix.

The Hamiltonian can be expanded into three terms: the kinetic energy term [𝑇𝛼𝛽(k)], the potential term (including
local potential from atomic cores and exchange correlation terms) and the non-local terms from pseudopotentials.

Kinetic energy term

The matrix elements of the kinetic energy operator under the psinc basis are given by

𝑇𝛼𝛽(k) =

∫︁
𝑑3𝑟𝜑k*𝛼 (r)e−ik·r(−∇2

r

2
)eik·r𝜑k𝛽(r),

Using psinc functions 𝐷𝑖(r):

𝐷𝑖(r) =
1

𝑁

∑︁
𝑝

𝑒𝑖G𝑝·(r−r𝑖),

The kinetic matrix elements becomes

𝑇𝛼𝛽(k) =

∫︁
𝑑3𝑟𝜑k*𝛼 (r)e−ik·r(−∇2

r

2
)eik·r𝜑k𝛽(r)

= − 𝑉

2𝑁2

∑︁
𝑖𝑗

𝑐k*𝑗𝛼𝑐
k
𝑖𝛽

∑︁
𝑝

(−|G𝑝 + k|2)𝑒𝑖G𝑝(r𝑗−r𝑖).

=
𝑉

2𝑁2

∑︁
𝑖𝑗

𝑐k*𝑗𝛼𝑐
k
𝑖𝛽

∑︁
𝑝

(|G𝑝 + k|2)𝑒𝑖G𝑝(r𝑗−r𝑖).

where we see that we only need to add k vector to the G vectors to make the kinetic energy matrix k-dependent.
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Local potential, hartree and exchange-correlation energy terms

The k-dependent local potential energy matrix is given by:

𝑉LHXC,𝛼𝛽(k) =

∫︁
𝑑3𝑟𝜑k*𝛼 (r)𝑒−ik·r𝑉LHXC(r)𝑒ik·r𝜑k𝛽(r)

=

∫︁
𝑑3𝑟𝜑k*𝛼 (r)𝑉LHXC(r)𝜑k𝛽(r)

And we see that no explicit k-dependence is needed in the local potential term.

Non-local potential term

The k-dependent non-local potential term is given by:

𝑉NL,𝛼𝛽(k) =
∑︁
𝐼,𝑙𝑚

⟨︀
𝜑k𝛼|𝑒−ik·r|𝜉𝐼𝑙𝑚

⟩︀
𝑉 𝐼
𝑙𝑚(k)

⟨︀
𝜉𝐼𝑙𝑚|𝑒ik·r|𝜑k𝛽

⟩︀
and we see that the phase factors are to be augmented to the non-local projectors so that the non-local potential term is
k-dependent.

Brillouin zone sampling

To find the ground state of the system, we need to sample the Brillouin zone by performing a summation over the
results of different k-points. Specifically, we need to perform k-point average over all energy components and the
charge density.

The k-point sampling is performed using the Monkhorst-Pack scheme where kpoints along a spcific direction are gen-
erated (in the first Brillouin zone) by

2𝑟 − 𝑞 − 1

2𝑞

where 𝑞 is the number of k-points in each direction and 𝑟 is the k-point index. An optional shift of half a grid cell can
be added so that Γ point is included in the sampling.

There are two ways to define the k-point sampling in ONETEP:

1. Automatic generation using the Monkhorst-Pack scheme.:

kpoint_grid_shift : 0 1 1
kpoint_grid_size : 3 6 6

which indicates that the size of the k-point grid is 3 along a direction, 6 along b direction (shifted by half a grid
distance) and 6 along c direction (also shifted by half a grid distance).

2. Manual generation using the k-point coordinates:

%block kpoints_list
0.5000000000 0.50000000 0.0000000000 0.125
0.5000000000 -0.50000000 0.0000000000 0.125
-0.5000000000 0.50000000 0.0000000000 0.125
-0.5000000000 -0.50000000 0.0000000000 0.125
0.5000000000 0.50000000 0.5000000000 0.125
0.5000000000 -0.50000000 0.5000000000 0.125
-0.5000000000 0.50000000 0.5000000000 0.125
-0.5000000000 -0.50000000 0.5000000000 0.125

%endblock kpoints_list

where k-points are defined in the fractional coordinates and the last column is the weight of the k-point.

3.2. Setting up k-points and spin in ONETEP 27



ONETEP Documentation, Release 7.1.8

3.2.4 Kpar parallelisation
Since the calculations with k-points are almost fully isolated with one and another, it makes sense to use k-pool paral-
lisation where multiple instances of ONETEP (k-parallisation groups, or kpars in short) is launched altogether, each in
charge of running a sub-set of k-points (and in each kpar, k-points are looped over in serial).

The kpar parallelisation is controlled by the keyword num_kpar in the input file:

num_kpars : 4

This means that the k-points are divided into 4 groups and 4 ONETEP instances will be launched.

It is worth noting that the number of processes needs to be the same for all kpars. This means you need to carefully
calculate the number of processes, taking into account that each ONETEP instance can only use the number of processes
less or equal to the number of atoms in the system.

3.2.5 Hybrid and extended NGWFs
In the PW mode, NGWFs needs to be extended. This is turned on by using the keyword extended_ngwf in the input
file. e.g.,

extended_ngwf : T T T

It is also possible to only allow NGWFs to be extended along certain directions, hence utlising the periodicity of the
system only along those directions via k-point sampling.

It is worth nothing that the extended NGWFs can also run withotu k-point sampling and should produce the same results
as running a plan-wave DFT calculation with only one k-point (i.e., the Γ point).

3.2.6 Fixed kernel calculation
When using fully extended NGWFs (extended_ngwf : T T T) it is possible to perform fixed kernel calculation
where the number of NGWFs used is the same as the number of occupied states. Since we are not optimising the
density kernel, this will only work with known insulators (i.e., all NGWFs are fully occupied).

This is done by setting:

maxit_lnv=-1
minit_lnv=-1

One thing to note is that to use this feature, sometimes one has to turn on permit_unusual_ngwf_count in the input
file and play around with the number of NGWFs for each species so that the total number of NGWFs is equal to the
number of occupied states.

3.2.7 Tight-binding (TB) mode
The tight-binding (TB) mode is not yet implemented. The TB mode is designed to use fully localised NGWFs and the
k-point sampling is performed by augmenting the Hamiltonian matrix and the overlap matrix with the k-point phase
factors.

3.2.8 Additional notes
Currently, full Brillouin zone sampling is only implemented in the plane-wave mode and tested for norm-conserving
pseudopotentials.

Supported functionalities: - Ground state energy calculation with LNV (exact_lnv : T) and EDFT (edft : T).
- Geometry optimisation (but no cell-optimisation). - Parts of the properties module (e.g., charge density outputs).
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3.2.9 Keywords
• extended_ngwf [Basic, bool bool bool, default F F F]. Turn on extended NGWFs along the three directions.

• kpoint_method [Basic, default None]. The method used to generate the k-point grid. The options are:

– PW: Plane-wave mode.

– None: No k-point sampling.

– TB: Currently not implemented.

• kpoint_grid_shift [Basic int int int, default 0 0 0]. The shift of the k-point grid.

• kpoint_grid_size [Basic int int int, default 1 1 1]. The size of the k-point grid.

• num_kpars [Basic int, default 1]. The number of k-parallelisation groups.

3.3 Conduction NGWF optimisation and optical absorption spectra
Author

Laura E. Ratcliff, Imperial College London

Date
July 2011

3.3.1 Conduction calculations
As a consequence of the NGWF optimisation process in ONETEP the occupied (valence) Kohn-Sham states are well
represented by the NGWFs, but the unoccupied (conduction) NGWFs are not, so that upon diagonalisation of the
Hamiltonian at the end of a calculation, if one were to compare the resulting eigenvalues with a conventional cubic-
scaling DFT code such as CASTEP [Clark2005], the ONETEP conduction states would be higher in energy than the
CASTEP states, and some conduction states might be missing [Skylaris2005]. In order to correct this problem, a
method has been implemented whereby a second set of NGWFs (referred to as the conduction NGWFs) are optimised
to accurately represent the Kohn-Sham conduction states. This is done with asymptotic linear-scaling computational
effort by constructing an idempotent density matrix representing the manifold of conduction states (rather than by
solving for them explicitly). Optimisation of the NGWFs describing the conduction states proceeds as with the valence
states, using a dual-loop system by which the conduction density kernel and the conduction NGWF coefficients are
simultaneously optimised.

It should be noted that the Kohn-Sham eigenvalues will of course not be expected to exactly correspond to the true
quasi-particle energies, however in practice reasonable agreement with experiment has been seen to occur in a number
of systems, particularly when using the scissor operator [Godby1986], [Gygi1989].

The conduction NGWF optimisation takes the form of a non-self-consistent calculation following a ground-state calcu-
lation, where the density and potential calculated in the ground-state calculation are re-used. A projected Hamiltonian
is then constructed in the conduction NGWF basis, using the density operator as a projection operator. This projected
Hamiltonian is modified to avoid problems which might occur if the Hamiltonian and density operators do not commute
perfectly. Additionally, the valence states are shifted up in energy by some amount 𝑤, such that they become higher in
energy than the conduction states. The projected conduction Hamiltonian is thus written:(︀

𝐻proj
𝜒

)︀
𝛼𝛽

= ⟨𝜒𝛼|�̂� − 𝜌
(︁
�̂� − 𝑤

)︁
𝜌|𝜒𝛽⟩

= (𝐻𝜒)𝛼𝛽 −
(︀
𝑇 †𝐾𝐻𝜑𝐾𝑇

)︀
𝛼𝛽

+𝑤
(︀
𝑇 †𝐾𝑆𝜑𝐾𝑇

)︀
𝛼𝛽
,

where {|𝜑𝛼⟩} is the set of valence NGWFs and {|𝜒𝛼⟩} the set of conduction NGWFs. 𝜌 is the valence density matrix,K
is the valence density kernel, S𝜑 is the valence overlap matrix and H𝜑 is the valence Hamiltonian. S𝜒 is the conduction
overlap matrix, T is the valence-conduction cross overlap matrix defined as 𝑇𝛼𝛽 = ⟨𝜑𝛼|𝜒𝛽⟩, H𝜒 is the (unprojected)
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conduction Hamiltonian, Hproj
𝜒 is the projected conduction Hamiltonian, Q is the conduction density matrix and M

is the conduction density kernel. The conduction NGWFs and kernel are then minimised with respect to the energy
expression 𝐸 = tr

[︁
QHproj

𝜒

]︁
, following the same procedure as in a standard ONETEP calculation. The shift can either

be set to a constant value, or updated during a calculation, by setting it to be higher than the highest eigenvalue as
calculated in the conduction NGWF basis.

At the end of the conduction NGWF optimisation process, the valence and conduction NGWF basis sets are combined
into a new ‘joint’ basis, which will be capable of accurately representing both the occupied and unoccupied Kohn-Sham
states. Other properties such as optical absorption spectra can then be calculated in this joint basis.

For further information see Ratcliff et al. [Ratcliff2011].

3.3.2 Performing conduction calculations in ONETEP
In order to optimise a set of NGWFs capable of accurately representing the Kohn-Sham conduction states in ONETEP, it
is first necessary to have performed a standard ONETEP ground-state calculation and have retained the density kernel
and NGWF output files. No special parameter values are required for this stage, although it may be worth setting
ODD_PSINC_GRID to true, as conduction NGWF radii generally need to be larger than valence NGWF radii in order
to achieve large convergence, and so it is more likely that the FFT box will be required to be equal to the psinc grid,
and as both stages of the calculation must have the same cut-off energy and therefore grid size, it is desirable to have
an odd grid for both the cell size and FFT box.

Once a ground-state calculation has been performed, a conduction calculation can be performed by setting
TASK=COND. The number of conduction NGWFs per species and their radii must then be specified in the
SPECIES_COND block, which follows the same pattern as the species block. The initial NGWFs, if not specified,
will be equal to the initial NGWFs used for the valence density matrix. This choice can be overridden by specifying
different choices in a SPECIES_ATOMIC_SET_COND block, which can be set to use the pseudoatomic solver by
setting “SOLVE” for each species. One useful option is to specify that certain valence states, particularly those known
to be fully filled and thus not expected to contribute to the manifold of conduction states, should be included in the
calculation of the ground state of the pseudoatom but left out of the conduction NGWF set. For example, when gener-
ating conduction NGWFs for Cadmium, one might want to include the 10 filled 4d states in the atom calculation, but
since they are not expected to contribute to the unoccupied states, they can be omitted from the conduction NGWFs by
setting a splitnorm of “-1” for them, through the following solver string: “SOLVE conf=4d10:-1”.

The conduction density kernel must contain a specific number of occupied states, and only these states will contribute
to the NGWF gradient: COND_NUM_STATES is used to specify the number of conduction states to be optimised.
In principle this could be any number, but in practice the higher energy conduction states converge rather slowly with
respect to conduction NGWF radii, and in particular completely delocalised conduction states are very hard to rep-
resent using localised basis functions. Therefore results should be treated with caution when optimising high energy
conduction states. A good rule-of-thumb is, if at all possible, to try to choose a manifold of conduction states above
which there is a reasonable sized gap in the density-of-states (as calculated with the valence NGWFs).

For truly asymptotically linear-scaling calculations, one must truncate the conduction density kernel. The cutoff for this
truncation is specified using COND_KERNEL_CUTOFF, although it is expected that high levels of kernel truncation
will significantly limit the accuracy of the calculated conduction states. If unsure, do not use kernel truncation unless
you are confident you have verified that the properties you are interested in are unaffected by the truncation.

At the end of a conduction calculation, diagonalisations are automatically performed of the valence Hamiltonian, both
the projected and unprojected conduction Hamiltonians and the joint valence-conduction Hamiltonian. The eigen-
values are written to the corresponding .bands files. However, no joint basis density kernel is generated and so the
occupancies are not calculated within this basis. The unprojected conduction eigenvalues are of limited use to most
users, as it is difficult to determine which are conduction states and which are poorly represented valence states. For
the projected conduction eigenvalues, the gap referred to in the output is not the usual gap, rather it is the gap between
the highest optimised conduction state and the lowest unoptimised conduction state. If required, it is also possible to
plot the orbitals in either the valence and conduction NGWF basis sets, and/or in the joint basis set, using the keywords
COND_PLOT_VC_ORBITALS and COND_PLOT_JOINT_ORBITALS.
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A standalone properties calculation can also be performed on the basis of sets of valence and conduction NGWFs
and kernels which have already been calculated. To enable this, set TASK=PROPERTIES_COND: the options
COND_READ_TIGHTBOX_NGWFS and COND_READ_DENSKERN will automatically be enabled, the NGWF
optimisation will skipped and the calculation will proceed straight to the stage of diagonalisation of the Hamiltonian
and plotting of the orbitals.

Automatic setup of COND_NUM_STATES

Since it is not always straightforward to guess a sensible number of conduction states to converge, the code will by
default attempt to choose an appropriate number of states for the user. By default, at the start of a conduction optimi-
sation, the code will count the number of unoccupied states of the valence Hamiltonian with negative eigenvalues to
arrive at a guess of the number of bound states in a finite system. The code will also check for any degeneracy of the
highest unoccupied state included in the calculation and automatically include more states until an energy gap of at
least 0.001 Ha between states that get optimised and states that are unoptimised is achieved.

Since counting the number of eigenstates with negative eigenvalues in order to obtain the number of bound states is
only strictly valid in finite systems, it is possible for the user to define an energy range, as measured from the HOMO
energy level, and the code will attempt to optimise all states within that energy range. The two keywords controlling
the automatic conduction state setup are given by COND_ENERGY_RANGE and COND_ENERGY_GAP. The first
keyword defines the desired energy range in Hartree while COND_ENERGY_GAP defines the minimum required
energy gap between the highest conduction state that is optimised and the lowest conduction state that stays unoptimised.

Setting the shift

There are a number of parameters relating to the shift, 𝑤, used in the projected conduction Hamiltonian. It is pos-
sible to keep the shift at some fixed value (defined using COND_INIT_SHIFT) during the calculation, by setting
COND_FIXED_SHIFT to true. Alternatively, it can be automatically updated during the calculation, which is usually
the safest way to proceed. This is achieved by calculating the highest eigenvalue within the conduction NGWF basis at
the start of each NGWF iteration (providing COND_CALC_MAX_EIGEN is set to true), and comparing the current
shift to this eigenvalue. Providing the shift is higher than the highest eigenvalue, it remains unchanged, but if the max-
imum eigenvalue has become greater than the current shift, it is updated to equal the maximum eigenvalue plus some
extra buffer value (defined by COND_SHIFT_BUFFER).

Local minima

In practice, it is sometimes possible to become trapped in local minima, where the ordering of states within the ini-
tial unoptimised basis doesn’t correspond to the correct order, and so sometimes states are missed. The problem
can be identified by decreasing NGWF_THRESHOLD_ORIG and seeing if the gradient stagnates while the energy
continues to decrease, or by plotting convergence graphs with conduction NGWF radii where sharp changes in en-
ergy are sometimes observed with small changes in conduction NGWF radii. In practice it is therefore very im-
portant to systematically converge calculations with respect to the conduction NGWF radii, which might require
larger values than ground-state ONETEP calculations. This problem can typically be avoided by optimising some
extra states (COND_NUM_EXTRA_STATES) above the required number of conduction states for a few iterations
(COND_NUM_EXTRA_ITS) (typically 5-10 iterations). Selecting the required number of extra states to include is
mostly a trial and error process whereby the number of extra states should be increased until no changes are seen in the
calculated conduction energy.

Additional notes on input parameters

As the ground-state NGWFs and density kernel are required for the conduction calculation,
READ_TIGHTBOX_NGWFS and READ_DENSKERN are automatically set to true. There are separate variables for
the corresponding conduction quantities (COND_READ_TIGHTBOX_NGWFS and COND_READ_DENSKERN)
which can be set to true for restarting conduction calculations. The parameters WRITE_TIGHTBOX_NGWFS and
WRITE_DENSKERN are not independently specified for the conduction and valence NGWF basis sets.
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Conduction calculations in implicit solvent

Some care has to be taken when performing a conduction optimisation for a system embedded in an implicit solvent
(see the separate Implicit Solvation documentation on how to perform a ground state calculation in implicit solvent).
The reason for this is that the ground state in the implicit solvation model is often computed in a two step process. In
the first step the solvation cavity is computed as an isosurface of the ground state density in vacuum, while in the
second step the ground state of the system is evaluated for that fixed cavity. In order for the conduction calculation to
be consistent with the ground state calculation, the same solvation cavity has to be used in both cases. To ensure that
the code uses the correct restart files when setting up the ground state Hamiltonian at the beginning of a conduction
optimisation, the following sets of keywords should be used:

Task : Singlepoint Cond

is_implicit_solvent : T

is_auto_solvation : T

is_smeared_ion_rep : T

The code will then automatically perform a SinglePoint and a conduction calculation in the implicit solvent, using the
same solvation cavity for both the ground state and the conduction state calculation. This is achieved by writing
.vacuum_dkn and .vacuum_tightbox_ngwfs files that are used to set up the solvation cavity.

If further conduction calculations are required using the same ground state, for example in order to change the
number of conduction states converged, it is possible to change the Task to COND and include the keyword
is_separate_restart_files: T. This triggers the use of the .vacuum files to set up the correct solvation cavity at the
beginning of the COND calculation.

3.3.3 Optical absorption spectra
The calculation of matrix elements for the generation of optical absorption spectra using Fermi’s golden rule has been
implemented in ONETEP following the method used in CASTEP, as outlined by Pickard [Pickard1997]. Using the
dipole approximation, the imaginary component of the dielectric function is defined as

𝜀2 (𝜔) =
2𝑒2𝜋

Ω𝜖0

∑︁
k,𝑣,𝑐

|⟨𝜓𝑐
k|q̂ · r|𝜓𝑣

k⟩|
2
𝛿 (𝐸𝑐

k − 𝐸𝑣
k − ~𝜔) , (3.9)

where 𝑣 and 𝑐 denote valence and conduction bands respectively, |𝜓𝑛
k⟩ is the 𝑛th eigenstate at a given k-point with

a corresponding energy 𝐸𝑛
k , Ω is the cell volume, q̂ is the direction of polarization of the photon and ~𝜔 its energy.

Currently only the Γ point is included in the sum over k-points.

As the position operator is ill-defined in periodic boundary conditions, this should instead be calculated using a mo-
mentum operator formalism, where the two are related via [Read1991]:

⟨𝜑𝑓 |r|𝜑𝑖⟩ =
1

𝑖𝜔𝑚
⟨𝜑𝑓 |p|𝜑𝑖⟩ +

1

~𝜔
⟨𝜑𝑓 |

[︁
𝑉𝑛𝑙, r

]︁
|𝜑𝑖⟩.

The commutator term can then be found using the identity [Motta2010]:

(∇k + ∇k′)

[︂∫︁
𝑒−𝑖k·r𝑉𝑛𝑙 (r, r′) 𝑒𝑖k

′·r′𝑑r 𝑑r′
]︂

= 𝑖

∫︁
𝑒−𝑖k·r [𝑉𝑛𝑙 (r, r′) r′ − r𝑉𝑛𝑙 (r, r′)] 𝑒𝑖k

′·r′𝑑r 𝑑r′,

where the derivative can either be calculated directly or using finite differences in reciprocal space. Once the matrix
elements have been calculated in this manner, they can then be used to form a weighted density of states according to
equation (3.9).
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3.3.4 Calculating optical absorption spectra in ONETEP
The calculation of matrix elements for optical absorption spectra is activated by setting
COND_CALC_OPTICAL_SPECTRA to true. The matrix elements are then calculated at the end of a conduc-
tion calculation in both the valence and joint valence-conduction NGWF basis sets. Various options can be modified,
including the choice of calculating the matrix elements in either the position or momentum representation, using
the parameter COND_SPEC_CALC_MOM_MAT_ELS. For accurate results, the position operator should only
be used for molecules, where the conduction NGWFs are sufficiently small compared to the size of the unit cell
that they do not overlap with any periodic copies. If using the momentum formulation, the default behaviour
is to also calculate the commutator between the nonlocal potential and the position operator, although setting
COND_SPEC_CALC_NONLOC_COMM will switch this off. Additionally, the method of calculation of the
commutator can be specified using COND_SPEC_CONT_DERIV, so that either a continuous derivative or finite
difference method is employed. If using the finite difference option, the finite difference shifting parameter can also
be specified using COND_SPEC_NONLOC_COMM_SHIFT.

Outputs

If the input filename is seed.dat then the matrix elements will be written to seed_val_OPT_MAT_ELS.txt and
seed_joint_OPT_MAT_ELS.txt. These contain the matrix elements between all states in the 𝑥, 𝑦 and 𝑧 directions,
and the energies of each state, as well as the transition energy, are also printed. For calculations in the momentum
representation, the real and imaginary components of the matrix element are printed in the additional two columns at
the end.

[Clark2005] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson and M. C. Payne, Z.
Kristallogr. 220, 567 (2005).

[Skylaris2005] C.-K. Skylaris, P. D. Haynes, A. A. Mostofi and M. C. Payne, J. Phys. Condens. Matter 17, 5757
(2005).

[Godby1986] R. W. Godby, M. Schlüter and L. J. Sham, Phys. Rev. Lett 56, 2415 (1986).

[Gygi1989] F. Gygi and A. Baldereschi, Phys. Rev. Lett 62, 2160 (1989).

[Ratcliff2011] L. E. Ratcliff, N. D. M. Hine and P. D. Haynes In Preparation (2011).

[Pickard1997] C. J. Pickard, Ph.D. thesis, University of Cambridge (1997).

[Read1991] A. J. Read and R. J. Needs, Phys. Rev. B 44, 13071 (1991).

[Motta2010] C. Motta, M. Giantomassi, M. Cazzaniga, K. Gal-Nagy and X. Gonze, Comput. Mater. Sci. 50, 698
(2010).

3.4 Finite-temperature DFT calculations using the Ensemble-DFT
method
Author

Álvaro Ruiz Serrano, University of Southampton

Author
Extended to spin relaxation by Kevin Duff, University of Cambridge

Author
Extended to include Grand Canonical Ensemble by Arihant Bhandari, University of Southampton

Author
Extended to include Pulay mixing and input trial step by Gabriel Bramley, University of Southampton
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Author
Extended to include Methfessel-Paxton and Gaussian smearing schemes by Tengxiang Li, University
of Southampton

Date
August 2013

Date
Extended by Kevin Duff April 2018

Date
Extended by Arihant Bhandari September 2020

Date
Extended by Gabriel Bramley November 2020

Date
Extended by Tengxiang Li June 2024

3.4.1 Basic principles
This manual describes how to run finite-temperature calculations using ONETEP. A recent implementation uses a direct
minimisation technique based on the Ensemble-DFT method [Marzari1997]. The Helmholtz free energy functional is
minimised in two nested loops. The inner loop performs a line-search in the space of Hamiltonian matrices (in a similar
fashion as described in Ref. [Freysoldt2009]), for a fixed set of NGWFs. Then, the outer loop optimises the NGWFs
psinc expansion coefficients for a fixed density kernel. For a more detailed description and discussion of this method
in ONETEP, see Ref. [Ruiz-Serrano2013].

Using the NGWF representation, the Helmholtz free energy functional becomes:

𝐴𝒯 [{𝐻𝛼𝛽}, {|𝜑𝛼⟩}] = 𝐸 [{𝐻𝛼𝛽}, {|𝜑𝛼⟩}] − 𝒯 𝑆 [{𝑓𝑖}] . (3.10)

where {𝐻𝛼𝛽} is the NGWF representation of the Hamiltonian matrix, {|𝜑𝛼⟩} is the current set of NGWFs, 𝒯 is the
electronic temperature, 𝐸 [{𝐻𝛼𝛽}, {|𝜑𝛼⟩}] is the energy functional and 𝑆 [{𝑓𝑖}] is an entropy term. The occupancies
of the Kohn-Sham states, {𝑓𝑖} are calculated from the energy levels, {𝜖𝑖}, using the Fermi-Dirac distribution:

𝑓𝑖 (𝜖𝑖) =

(︂
1 + exp

[︂
𝜖𝑖 − 𝜇

𝑘B𝒯

]︂)︂−1

.

where 𝜇 is the Fermi level. To obtain the energy eigenvalues, {𝜖𝑖}, the Hamiltonian matrix is diagonalised as:

𝐻𝛼𝛽𝑀
𝛽
𝑖 = 𝑆𝛼𝛽𝑀

𝛽
𝑖 𝜖𝑖,

where {𝑆𝛼𝛽} are the elements of the NGWF overlap matrix, and
{︁
𝑀𝛽

𝑖

}︁
are the expansion coefficients of the Kohn-

Sham eigenstates in the NGWF basis set. At the moment, this is a cubic-scaling operation that requires dealing dense
matrices, which makes it memory-demanding.

3.4.2 Smearing schemes
The functions implemented in the ONETEP are as below:

Fermi-Dirac distribution:

• In default Ensemble DFT, the electrons’ occupation numbers obey the Fermi-Dirac distribution:

𝑓(𝜖) =
1

𝑒(𝜖−𝜇)/𝜎 + 1
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• And the entropy follows the function:

𝑆 = −
∑︁
𝑖

𝑓(𝜖𝑖) ln 𝑓(𝜖𝑖) + (1 − 𝑓(𝜖𝑖)) ln(1 − 𝑓(𝜖𝑖))

• Where 𝑓(𝜖) is the occupation number of a certain electron with energy eigenvalue 𝜖, 𝜇 is the chemical potential
and 𝜎 is the broadening parameter, for finite temperature calculations 𝜎 = 𝑘𝐵𝑇 with 𝑇 being the temperature.

• To activate, pass EDFT_SMEARING_SCHEME FERMIDIRAC, or do nothing, as this is the default.

Mepan (Methfessel-Paxton) smearing:

• Besides the Fermi-Dirac distributions, in ONETEP there is also Methfessel-Paxton smearing with occupancies:

𝑓(𝑥𝑖) =
1

2
(1 − erf(𝑥𝑖)) − 𝑥𝑖 exp(− 𝑥2𝑖

2
√
𝜋

)

• And the entropy follows the function:

𝑆 =
∑︁
𝑖

− 1

4
√
𝜋

(2𝑥2𝑖 − 1) exp(−𝑥2𝑖 )

• To activate, pass EDFT_SMEARING_SCHEME MEPA.

Gaussian smearing:

• And we also have Gaussian smearing, with the occupancies that follow the function:

𝑓(𝑥𝑖) =
1

2
(1 − erf(𝑥𝑖))

• And the entropy:

𝑆(𝑥𝑖) =
∑︁
𝑖

1

2
√
𝜋

exp(−𝑥𝑖)

• To activate, pass EDFT_SMEARING_SCHEME GAUSSIAN.

In Methfessel-Paxton and Gaussian smearing, where 𝑥𝑖 = (𝜖 − 𝜇)/𝜎, the arguments 𝜖, 𝜇, 𝜎 are the same as the ones
in Fermi-Dirac smearing.

3.4.3 Free- and fixed-spin EDFT
By default in spin polarized runs, the total occupancy of each spin channel is held fixed; each spin channel has its own
Fermi level determined by this constraint. Alternatively the whole system can be held at one Fermi level dictated by
the conservation of the total number of electrons in the system, allowing the net spin to freely relax.

Free-spin EDFT should be appropriate for most applications unless there’s a reason to hold the system fixed at a given
net spin. As with any minimization with potentially many minima, the final state may depend on initial conditions.
As a special case, free-spin EDFT may not be able to symmetry-break a system that wants to have any kind of spin
polarization but that is initialized to have 0 net spin. The general advice for simple systems like basic ferromagnets
(though this should not replace good system-specific judgment) is to slightly over-specify the expected net spin on each
atom and hold the spin fixed for a few iterations before being allowed to relax. For example a cobalt cluster is expected
to have a net spin per atom lower than that of an isolated atom, that decreases to bulk-like as a function of cluster size.
A good initialization may be to give each atom atomic-like net spin and hold the net spin fixed for 3-5 NGWF CG
iterations, then allow it to relax.

3.4. Finite-temperature DFT calculations using the Ensemble-DFT method 35



ONETEP Documentation, Release 7.1.8

3.4.4 Compilation
By default, ONETEP is linked against the Lapack library [lapack_web] for linear algebra. The Lapack eigensolver
DSYGVX [DSYGVX], can only be executed in one CPU at a time. Therefore, EDFT calculations with Lapack are
limited to small systems (a few tens of atoms). Calculations on large systems are possible if, instead, ONETEP is linked
against ScaLapack library [scalapack_web] during compilation time. The ScaLapack eigensolver, PDSYGVX, can be
run in parallel using many CPUs simultaneously. Moreover, ScaLapack can distribute the storage of dense matrices
across many CPUs, thus allowing to increase the total memory allocated to a given calculation in a systematic manner,
simply by requesting more processors. For the compilation against ScaLapack to take effect, the flag -DSCALAPACK
must be specified during the compilation of ONETEP.

3.4.5 Pulay Mixing EDFT
In default EDFT, the Hamiltonian is updated using a damped fixed point update routine:

𝐻
(𝑚+1)
𝛼𝛽 = 𝐻

(𝑚)
𝛼𝛽 + 𝜆𝑅[𝐻

(𝑚)
𝛼𝛽 ]

Where the 𝜆 defines the mixing parameter and residual is defined as:

𝑅[𝐻
(𝑚)
𝛼𝛽 ] = �̃�

(𝑚)
𝛼𝛽 −𝐻

(𝑚)
𝛼𝛽

Where �̃�(𝑚)
𝛼𝛽 is the diagonlised Hamiltonian obtained at step m. At a sufficiently low value of 𝜆, most systems will

achieve convergence, but at an increasingly slow rate as the system increases in size. Convergence can be accelerated
using quasi-Newton update methods such as Broyden or Pulay methods, the latter of which is implemented in EDFT
as an alternative to the damped fixed point method.

The implementation in ONETEP uses a similar logic to other DFT implementations of Pulay’s method, except the
Hamiltonian is optimised instead of the density:

𝐻
(𝑚+1)
𝛼𝛽 =

𝑚∑︁
𝑗=𝑚−𝑛+1

𝑐𝑗𝐻
(𝑗)
𝛼𝛽 + 𝜆

𝑚∑︁
𝑗=𝑚−𝑛+1

𝑐𝑗𝑅[𝐻
(𝑗)
𝛼𝛽 ]

Where the history length is defined 𝑛 and the co-efficients 𝑐𝑗 are obtained through the procedure outlined by Ref.
[Kresse1996]. For the systems tested, this method leads to improved convergence, especially for larger metallic systems.
Further information can be found in Ref. [Woods2019].

3.4.6 Increased Calculation Speed Using Fixed Step Sizes
As described in the Section on Pulay mixing, 𝜆 defines the step length taken at each inner loop iteration. In the default
algorithm, an optimal 𝜆 value which gives the greatest decrease in the Lagrangian is determined by a line search routine.
Although this improves the robustness of the algorithm, the line search requires two or more energy evaluations per
inner loop step to obtain the optimum 𝜆 value. If 𝜆 varies very little over the course of the calculation, this can double
the computational expense of each inner loop iteration for a negligible increase in the accuracy for each step.

Alternatively, one can fix the 𝜆 to a reasonable value for a significant speed-up by ensuring only one energy evaluation
is performed per inner loop iteration. However, this option is less robust than the default line search algorithm, as the
fixed 𝜆 value may produce either sub-optimal energy decreases or energy increases for certain steps. Furthermore,
if 𝜆 is chosen to be too high, your answer may diverge from the ground state by taking several consecutive positive
Lagrangian steps (A warning will be provided if this occurs too often). Conversely, convergence will be very slow if 𝜆
is chosen to be too low. 𝜆 is set with the edft_trial_step keyword, which switches from the line search algorithm
if greater than 0, and uses the fixed 𝜆 value specified.

User input values of 𝜆 can be determined by running a standard EDFT calculation for a single NGWF iteration with line
search and plotting the ’step’ value printed at each iteration (in VERBOSE output mode). The safest option is to choose
a value close to the minimum step value, but a slightly higher value can be selected, especially if larger step values are
common. The first two steps of your calculation choose 𝜆 with line search regardless of your input, as optimal step
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sizes for these iterations are significantly larger than subsequent inner loop iterations. As such, these two iterations
should be disregarded from your 𝜆 value selection analysis. As step sizes which yield stable convergence are system
dependent, it is recommended to manually determine different 𝜆 values for systems with large differences in species or
size.

3.4.7 Commands for the inner loop
Basic setup

• edft: T/F [Boolean, default edft: F]. If true, it enables Ensemble-DFT calculations.

• edft_maxit: n [Integer, default edft_maxit: 10]. Number of EDFT iterations in the ONETEP inner loop.

• edft_smearing_width: x units [Real physical, default edft_smearing_width: 0.1 eV]. Sets the
value of the smearing width, 𝑘B𝒯 , of the Fermi-Dirac distribution. It takes units of energy (eV, Hartree) or
temperature. For example, edft_smearing_width: 1500 K will set 𝒯 = 1500 degree Kelvin.

• edft_smearing_scheme: fermidirac/mepa/gaussian [Character, default edft_smearing_scheme:
fermidirac]. Choose the smearing schemes for EDFT in the ONETEP inner loop.

• edft_update_scheme: damp_fixpoint/pulay_mix [Character, default dft_update_scheme:
damp_fixpoint]. Defines the mixing scheme for EDFT in the ONETEP inner loop.

• edft_ham_diis_size: x [Integer, default edft_ham_diis_size: 10]. Specifies the maximum number
of Hamiltonians used from previous iterations to generate the new guess through Pulay mixing.

• spin: x [Real, default spin: 0.0]. For EDFT runs this value does not need to be an integer. Because we
are considering an ensemble of states it can have any real value between −𝑛elec

2 to 𝑛elec

2 . Make sure you have
enough bands to cover the more populated spin channel.

• edft_spin_fix [Integer, default edft_spin_fix: -1]. Control for whether the net spin of the system should
remain fixed at spin, or relax during the run. Any negative number will fix the net spin. Nonnegative numbers
𝑛 will hold the net spin fixed for 𝑛 iterations then let it relax for the rest of the calculation.

• edft_trial_step [Integer, default edft_trial_step: 0]. Sets the value of 𝜆, which fixes the step size in
the EDFT inner loop, and switches off the line search for optimum 𝜆 values. If set to 0, the normal line search
routine is used.

Tolerance thresholds

• edft_free_energy_thres: x units [Real physical, default edft_free_energy_thres: 1.0e-6 Ha/
Atom]. Maximum difference in the Helmholtz free energy functional per atom between two consecutive itera-
tions.

• edft_energy_thres: x units [Real physical, default edft_energy_thres: 1.0e-6 Ha/Atom]. Max-
imum difference in the energy functional per atom between two consecutive iterations.

• edft_entropy_thres: x units [Real physical, default edft_entropy_thres: 1.0e-6 Ha/Atom].
Maximum difference in the entropy per atom functional between two consecutive iterations.

• edft_rms_gradient_thres: x [Real, default edft_rms_gradient_thres: 1.0e-4]. Maximum RMS

gradient
𝑑𝐴𝒯

𝑑𝑓𝑖
.

• edft_commutator_thres: x units [Real physical, default edft_commutator_thres: 1.0e-5
Hartree]. Maximum value of the Hamiltonian-Kernel commutator.

• edft_fermi_thres: x units [Real physical, default edft_fermi_thres: 1.0e-3 Hartree]. Maxi-
mum change in the Fermi energy between two consecutive iterations.
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Advanced setup

• edft_extra_bands: n [Integer, default edft_extra_bands: -1]. Number of extra energy bands. The
total number of bands is equal to the number of NGWFs plus edft_extra_bands. When set to a negative
number, no extra bands are added.

• edft_round_evals: n [Integer, default edft_round_evals: -1]. When set to a positive integer value,
the occupancies that result from the Fermi-Dirac distribution are rounded to n significant figures. This feature
can reduce some numerical errors arising from the grid-based representation of the NGWFs.

• edft_write_occ: T/F [Boolean, default edft_write_occ: F]. Save fractional occupancies in a file.

• edft_max_step: x [Real, default edft_max_step: 1.0]. Maximum step during the EDFT line search.

3.4.8 Commands for the outer loop
The standard ONETEP commands for NGWF optimisation apply to the EDFT calculations as well. The only flag that
is different is:

• ngwf_cg_rotate: T/F [Integer, default ngwf_cg_rotate: T]. This flag is always true in EDFT calcula-
tions. It ensures that the eigenvectors 𝑀𝛽

𝑖 are rotated to the new NGWF representation once these are updated.

3.4.9 Restarting an EDFT calculation
• write_hamiltonian: T/F [Boolean, default write_hamiltonian: F]. Save the last Hamiltonian matrix

on a file.

• read_hamiltonian: T/F [Boolean, default read_hamiltonian: F]. Read the Hamiltonian matrix from
a file, and continue the calculation from this point.

• write_tightbox_ngwfs: T/F [Boolean, default write_tightbox_ngwfs: T]. Save the last NGWFs on
a file.

• read_tightbox_ngwfs: T/F [Boolean, default read_tightbox_ngwfs: F]. Read the NGWFs from a file
and continue the calculation from this point.

If a calculation is intended to be restarted at some point in the future, then run the calculation with
write_tightbox_ngwfs: T

write_hamiltonian: T

to save the Hamiltonian and the NGWFs on disk. Two new files will be created, with extensions .ham and
.tightbox_ngwfs, respectively. Then, to restart the calculation, set
read_tightbox_ngwfs: T

read_hamiltonian: T

to tell ONETEP to read the files that were previously saved on disk. Remember to keep a backup of the output
of the first run before restarting the calculation.

the density kernel is not necessary to restart an EDFT calculation. However, it is necessary to calculate the
electronic properties of the system, once the energy minimisation has completed. To save the density kernel on
a file, set: write_denskern: T

to generate a .dkn file containing the density kernel. To read in the density kernel, set
read_denskern: T
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3.4.10 Controlling the parallel eigensolver
Currently, only the ScaLapack PDSYGVX parallel eigensolver is available. A complete manual to this routine can be
found by following the link in Ref. [PDSYGVX]. If ONETEP is interfaced to ScaLapack, the following directives can
be used:

• eigensolver_orfac: x [Real, default eigensolver_orfac: 1.0e-4]. Precision to which the eigen-
solver will orthogonalise degenerate Hamiltonian eigenvectors. Set to a negative number to avoid reorthogo-
nalisation with the ScaLapack eigensolver.

• eigensolver_abstol: x [Real, default eigensolver_abstol: 1.0e-9]. Precision to which the parallel
eigensolver will calculate the eigenvalues. Set to a negative number to use ScaLapack defaults.

The abovementioned directives are useful in calculations where the ScaLapack eigensolver fails to orthonormalise the
eigenvectors. In such cases, the following error will be printed in the input file:

(P)DSYGVX in subroutine dense_eigensolve returned info= 2.

Many times (although not always) this error might cause the calculation to fail. If this situation occurs, set
eigensolver_orfac: -1

eigensolver_abstol: -1

in the input file and restart the calculation. ScaLapack will not reorthonormalise the eigenvectors. Instead, an external
Löwdin orthonormalisation process [Lowdin1950] will be triggered. This is usually more efficient for larger systems.

3.4.11 Grand Canonical Ensemble DFT
In simulations of electrochemical electrodes, the electrons can freely exchange between the electrode and the electrical
circuit. So, there is no constraint on the number of electrons𝑁 . Rather, the electrode potential 𝑈 is fixed, with respect
to a reference electrochemical potential 𝜇𝑟𝑒𝑓 which fixes the chemical potential of electrons 𝜇:

𝜇 = 𝜇𝑟𝑒𝑓 − 𝑒𝑈

Typical experiments use a standard hydrogen electrode as the reference electrode with 𝜇𝑆𝐻𝐸
𝑟𝑒𝑓 = −4.44 eV. Once the

chemical potential of electrons is fixed, the number of electrons changes as a dependent variable according to the
Fermi-Dirac distribution in eq. .

𝑁 =
∑︁
𝑖

𝑓𝑖

Thermodynamically, this corresponds to switching the electrons from the finite-temperature, fixed-number canoni-
cal ensemble to the finite-temperature, fixed-potential grand-canonical ensemble. Correspondingly, the relevant free
energy minimized at equilibrium is the grand potential [Sundararaman2017]:

Ω = 𝐴− 𝜇𝑁

The following keywords are used for the grand-canonical ensemble DFT:

• edft_grand_canonical: T/F [Boolean, default edft_grand_canonical: F]. Switch to fixed-potential
grand-canonical ensemble.

• edft_reference_potential: x units [Real physical, default edft_reference_potential: -4.44
eV]. Set the reference potential 𝜇𝑟𝑒𝑓 . If no units are given, atomic units are considered: Ha (hartrees).

• edft_electrode_potential: x units [Real physical, default edft_electrode_potential: 0.0 V].
Set the electrode potential 𝑈 . If no units are given, atomic units are considered: Ha/e, hartrees per elementary
charge.
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• edft_nelec_thres: x [Real, default edft_nelec_thres: 1.0e-06 per atom]. Convergence thresh-
old on the change in number of electrons per spin channel per atom.
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in the theory of molecules and crystals. J. Chem. Phys., 18(3):365–375, 1950.
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3.5 Running linear-scaling DFT calculations for metallic systems with
the AQUA-FOE method
Author

Jolyon Aarons, University of Southampton

Author
Chris-Kriton Skylaris, University of Southampton

This is a guide to performing FOE calculations on metals in ONETEP using the EDFT functionality. The methodology
will be explained briefly, but for detailed information about how these methods work and are implemented, appropriate
references are presented. We provide a example calculation, walk through and input files at the end of this document.
Finally, to perform these calculations, a recent (as of 2018) version of ONETEP is required, for instance version 4.5.4.4,
or the upcoming version 5.0.

3.5.1 Metals in ONETEP
Calculations on conductors have been possible in ONETEP with EDFT since 2013. In its default mode, EDFT will
perform a diagonalisation of the Hamiltonian matrix and form the density kernel matrix from the eigenvectors and a
Fermi-Dirac occupancy function of the eigenvalues. If your calculations have fewer than 1000 atoms, this mode is
probably your best option. The method scales cubically with system size, however, and when you have a few thousand
atoms calculations are impractically slow on current supercomputers.

On larger systems, it is possible that you will have sufficient sparsity in the Hamiltonian matrix that a Fermi-Operator-
Expansion based approach to constructing the density kernel will be faster. The idea behind this approach is that a
power series expansion of the Fermi-Dirac distribution function can be applied directly to the Hamiltonian matrix, as
matrix multiplications are linear operations. Hence, the density kernel matrix can be constructed from matrix powers
of the Hamiltonian matrix, without diagonalisation. The main caveat with this is that sparsity must be exploited, or
such a method is likely to be slower than the diagonalisation based alternative, due to the many matrix multiplications
that are required. Since sufficient sparsity is only obtained for metals with more than about 1000 atoms, we recommend
the use of this method only for larger systems.

40 Chapter 3. Ground State Calculation Setup

http://www.netlib.org/lapack/
http://netlib.org/lapack/double/dsygvx.f
http://www.netlib.org/scalapack/
http://www.netlib.org/scalapack/double/pdsygvx.f


ONETEP Documentation, Release 7.1.8

The way that we apply the matrix analogue of the Fermi-Dirac distribution function,

𝐾 = [𝐼 + exp((𝐻 − 𝜇𝐼)𝛽) ]−1,

without diagonalisation or the poor conditioning of applying the above operations directly is to firstly compute an
expansion of a system of electrons at an integer multiple (2𝑛) of the electronic temperature, so that:

𝐾HOT = [𝐼 + exp((𝐻 − 𝜇𝐼)𝛽/2𝑛) ] −1. (3.11)

The advantage of applying an expansion to hotter electrons is that the argument of the exponential function is reduced in
magnitude, so fewer terms in expansion of the Fermi-Dirac distribution function are needed for a good approximation.
In practice, we use a low order Chebyshev approximation to equation (3.11). To recover 𝐾, the density kernel matrix
at the target temperature, we need to anneal 𝐾HOT by halving the temperature, 𝑛− 1 times. This can be achieved by
applying the matrix analogue of the hyperbolic tangent double angle formula after noting that

𝐾HOT =
1

2

(︂
𝐼 + tanh

(︂
(𝐻 − 𝜇𝐼)

𝛽

2𝑛+1

)︂)︂
.

The annealing formula is given as:

𝐾HOT/2 =
1

2

(︂
4𝐾HOT − 2𝐼

𝐼 + (2𝐾HOT − 𝐼)2
+ 𝐼

)︂
, (3.12)

which we do not apply directly in practice (this would cost 1 matrix product and 1 matrix solve / inversion), but expand
equation (3.12) as another Chebyshev polynomial expansion, which is cheaper due to equation (3.12) being very well
conditioned (we know that the eigenvalues of the denominator are necessarily between 1.0 and 2.0).

The application of equation (3.11) assumes that we know the chemical potential, 𝜇. In practice, we do not. We instead
start with a trial chemical potential and improve𝐾 in the sense that we drive it towards the electron conserving chemical
potential. We achieve this by knowing how wrong we were at a given 𝜇𝑖,

∆𝑁𝑒 = 𝑁𝑒 − trace (𝐾(𝜇𝑖)) ,

and by using hyperbolic trigonometry to correct by this by a change in chemical potential, ∆𝜇 without recalculating
the expansion:

[𝐼 + exp {(𝐻 − 𝜇𝐼)𝛽 ± 𝛽∆𝜇𝐼}]
−1

=
1

2

⎛⎝𝐼 +
2𝐾 ± tanh

(︁
𝛽Δ𝜇
2

)︁
𝐼 − 𝐼

𝐼 ± tanh
(︁

𝛽Δ𝜇
2

)︁
× (2𝐾 − 𝐼)

⎞⎠ .

Likewise with this equation, we do not apply it directly but expand it as a Chebyshev polynomial to avoid an inversion.
Once again, this works well because we know that this is a well conditioned problem. To know how much to adjust the
chemical potential we can use the derivative:

𝜕𝑁𝑒

𝜕𝜇
= −𝛽

4

(︀
1 − trace(𝐾2)

)︀
,

and the electron residual ∆𝑁𝑒.

The final piece in this puzzle is to construct the electronic entropy, which we find as a matrix, taking its trace to find
the scalar electronic entropy. We avoid calculating the Entropy as

𝒮 = tr[K ln(K) + [I−K] ln(I−K)] , (3.13)

because this involves calculating two expensive matrix logarithms. Instead we use a further expansion for this quantity,
this time taking that of the Fermi-Dirac entropy expression. When expanding this expression as a Chebyshev expansion,
many terms are required to reach a good approximation at zero and one occupancy. To avoid this problem, we expand a
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form which maintains the property that the single particle entropy is zero at zero and one occupancy with fewer terms.
This is:

𝑠(𝑥) ≃ 𝑎𝑥2 +
𝑏

𝑐+ 𝑑𝑥− 𝑑𝑥2
− 𝑒− 𝑎𝑥 = 𝑦(𝑥), (3.14)

where 𝑎 = 1.96056, 𝑏 = 0.0286723, 𝑐 = 0.114753, 𝑑 = 1.98880 and 𝑒 = 0.249860. We then refine this with further
expansions.

In practice, because sparsity is imposed on the density kernel and entropy matrices, we do not have perfectly accurate
implicit eigenvalues. Some of these may be above one, so when taking large powers of the matrix, as we do in the power
expansion of equation (3.14), the (implicit) eigenvalues of the entropy may explode, causing a problem. To detect and
avoid this problem, we use a very simple quadratic approximation to the entropy.

The quadratic

𝑓(𝑥) = 3𝑥2 − 3𝑥,

the coefficients of 3 minimise the integral of 𝑥*𝐿𝑛(𝑥)+(1−𝑥)*𝐿𝑛(1−𝑥)−𝑐𝑥2−𝑐𝑥 over [0:1]. The maximum error
of this approximation is at 𝑥 = 0.5, where the error is 0.05685 or 8.2% of the correct value at 0.5. This indicates that
in the very worst case where every eigenvalue of KS is 0.5, then the error on the entropy from this approximation is
8.2%. The value of this is that KSKS is easy to calculate reliably, compared with a high order series expansion. . . i.e.
if there is an eigenvalue of K which is a little above 1 because of noise due to truncation, the corresponding eigenvalues
in the entropy matrix can be very large. This can accumulate in the entropy value, if there are many of these greater
than 1 eigenvalues, to give a completely wrong value. We can, therefore, check the value of entropy we have calculated
by comparing it with this quadratic approximation. If the absolute difference between the two values is less than 8.2
the high order value, then we assume that things have gone well and do nothing. If this is not the case, then there was
a high amount of error accumulated and so we’ll print a warning and a refined quadratic approximation (a quartic).

In practice, when we take all of these power expansions, we need to consider the tensorial transformation properties of
the quantities we are considering, for instance: the Hamiltonian matrix, 𝐻𝛼𝛽 is covariant, so taking a power requires
that we raise the appropriate indices using the metric : (𝐻𝛼𝛽)𝑛 = (𝐻𝛼𝛾𝑆

𝛾𝛿)𝑛𝑆𝛿𝛽 . In practice we can do this in
one of two ways, either invert the metric / overlap matrix 𝑆𝛼𝛽 = (𝑆𝛼𝛽)−1 and multiply by the Hamiltonian to give
a Hamiltonian matrix in the natural representation (contra-covariant) or solve an approximate problem in the style of
Haydock et al [Gibson1993]. We then need to store the mixed contra-covariant Hamiltonian matrix, which we choose
to represent in the sparsity pattern suggested by Haydock et al. This is the covariant Hamiltonian matrix sparsity pattern
by default, but the user may specify an optional argument to effectively increase the interaction regions of this sparsity
pattern with respect to the covariant case.

More information on our method may be found in [Aarons2018].

3.5.2 Setting up a Calculation
The most important thing to understand firstly is that this method is probably only sensible for large metallic systems.
If your system has a band-gap, it would be wise to explore standard insulating ONETEP (LNV) first. This method
should still work, but LNV ought to be much faster.

The calculation should perform EDFT as the electronic minimiser. Please set

EDFT : T

in your input file. As you will be performing a finite electronic temperature calculation with the Fermi-Dirac occupancy
distribution function, it would also be wise to choose an electronic smearing (temperature). The default value is 0.1
eV, which may well be sufficient in your case. Please bear in mind that with FOE enabled, unlike with EDFT with
diagonalisation the calculation is likely to be faster with higher electronic temperature. Depending on the property you
wish to probe, you may get away with a higher temperature, but it is very unlikely that the smearing should be above
1.0 eV. Set the smearing as
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EDFT_SMEARING_WIDTH : 0.25 eV .

You may also at this point wish to set some EDFT stopping criteria, as the defaults are likely to be too tight for
EDFT with FOE. It is possible to tweak the FOE options to get under tight thresholds, but at the expense of reduced
performance.

EDFT_FREE_ENERGY_THRES : 1e-5 Ha
EDFT_COMMUTATOR_THRES : 1e-4

should be quite realistic in most cases and will certainly serve as an adequate starting point.

The number of extra bands parameter in EDFT should always be set to the maximum, which is done by setting:

EDFT_EXTRA_BANDS : -1

This should be sufficient for the EDFT part of the calculation, next we will need to configure the FOE. Firstly, please
enable it in your calculation with

FOE : T

This alone will perform a FOE calculation as we have described in this document, but unless you have already set a
kernel truncation, then your density kernel matrix will be dense and you might as well just run a normal EDFT calcula-
tion with diagonalisation. One possible exception to this is if you do not have access to Scalapack or a ONETEP binary
compiled against Scalapack, or your Scalapack distribution is poorly optimised or broken. In this case it may still be
preferable to avoid the diagonalisation.

To achieve some sparsity in the density kernel matrix, we have various options and strategies.

1. Just to use a geometric kernel truncation:
Here we enforce a simple sparsity pattern on the density kernel matrix by ensuring that matrix elements
resulting from NGWFs on atoms separated by a large enough distance are zero.

kernel_cutoff : 20 Ang

a larger value will result in a more accurate answer, but also give a less sparse matrix which will have perfor-
mance implications. This parameter is material-dependent and you are encouraged to play with it to find a happy
medium.

2. Use a sparsity pattern inspired by the power series expansions which we use extensively in the FOE methods.
The FOE method is based on the idea that we only need a finite number of terms in the power expansion to get
sufficient accuracy. In the same spirit, we can truncate the expansion to give a sparsity pattern of the density
kernel matrix as a low order power of the Hamiltonian matrix. In ONETEP, this can currently be set to be the
squared power by using:

H2DENSKERN_SPARSITY : T

If you opt for the second option, then the quadratic order term in the expansion may not be a sufficiently accurate
sparsity pattern to achieve the accuracy you were hoping for, but higher order powers are likely to be too dense to be
useful and are not exposed to the user. Instead to reach your desired tolerances, we recommend you consider using the
radius multiplier option.

This option extends the effective range of the Hamiltonian matrix (when represented in contra-covarient, mixed form
(as described above) and the density kernel matrix is formed from the square of this increased range matrix. The option
is given in terms of a multiplier, which multiplies the NGWF radius to produce the resulting sparsity patterns. This
option increases accuracy at the expense of performance and it is up to you as a user to find an appropriate value. A
starting point may be around 1.2 to 1.5 times:
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CONTRACOHAM_RADMULT : 1.2

It is worth pointing out here that you must also ensure your calculation is converged with respect to plane wave kinetic
energy cutoff and NGWF radius, as well as number of NGWFs per atom. If you do opt for Hamiltonian matrix squared
sparsity in the density kernel matrix, however, you will find that NGWF radius plays a particularly big role in the
accuracy of your calculation. This is because it is effectively the parameter which controls the sparsity of your density
kernel in this mode. Increasing the radius multiplier will be cheaper (to an extent) than increasing the NGWF radii, but
you should make sure that your NGWF radii are sufficient first!

The final parameter which is important to achieve your tolerances is the 𝜇-tolerance in the chemical potential search.
In practice this should be at least an order of magnitude smaller than your EDFT energy tolerances. You may find that
you can improve the performance of your calculations by adjusting this, but you will find that the gains will be minor,
because the number of extra matrix multiplications near to convergence is minimal compared with the number far from
the correct chemical potential. This is set as:

FOE_MU_TOL : 1e-6 eV

Beyond this, there is little else to know, from a user perspective about performing FOE calculations in ONETEP. A
general point is that these calculations tend to be expensive. If you are running a metallic system which is big enough
to exhibit exploitable sparsity in its density kernel matrix, then you are probably looking at a system with thousands of
atoms. In this case you will need to be running on a supercomputer and using a parallel version of ONETEP with as
many cores as you can use.

If you are looking for ways to speed up your calculations, look at OpenMP / MPI parallelism rather than just MPI, also
try to optimise your convergence criteria to have the lowest values you can get away with while maintaining your desired
level of accuracy. You may also want to look at the option of using fixed NGWFs and only optimising the density kernel.
If you go down this route, please ensure that you use a multiple 𝜁 set of NGWFs and probably polarisation functions.
All of these extra points are really general ONETEP comments and information on them can be found in the other
tutorials on the ONETEP website.

3.5.3 An Example
As an example we will set up a single-point energy calculation on bulk Magnesium, using PAW. We’ll opt for a decent
cut-off energy of 700 eV and the PBE exchange-correlation functional.

task singlepoint
cutoff_energy 700 eV
charge 0
xc_functional PBE
paw : T

We need to enable EDFT and set it up as we have described:

!EDFT
edft : T
edft_smearing_width: 0.5 eV
edft_maxit: 10

10 EDFT iterations may be too few, and 0.5 eV smearing may be too hot for production calculations, but for the sake
of a demonstration, they speed things up a bit.

We also should opt for as much threading as we can get away with because this will be made use of in every matrix
product:
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!THEADING
threadsmax 8
threadsperfftbox 1
threadsnumfftboxes 8
threadspercellfft 8
threadsnummkl 8

For instance, if your supercomputer has two 8 core processors per node, you could opt for 8-way OpenMP maximally,
although in practice, you might want to reduce this to 4-way, if you need the MPI ranks.

Now lets save some matrices and information:

! properties
do_properties F

! I/O
output_detail VERBOSE
timings_level 1
write_xyz T
write_denskern T
read_denskern F
write_tightbox_ngwfs T
read_tightbox_ngwfs F
write_hamiltonian T
read_hamiltonian F

In practice it is a good idea to write everything, in case you need to continue this calculation, but in the extreme case
where your NGWFs and matrices are too big to write to disk (not enough space or it’s taking too long) then you can
disable this.

Now we can set up NGWF optimisation:

! NGWF optimization
k_zero 2.5
maxit_ngwf_cg 25

and FOE:

foe : T
dense_foe : F
H2DENSKERN_SPARSITY : T

Before setting up the Mg:

%block species
Mg Mg 12 4 8.0
%endblock species

%block species_atomic_set
Mg "SOLVE"
%endblock species_atomic_set

for instance. Or, if you wanted to set maxit_ngwf_cg to be zero and run a fixed NGWF calculation, you could run a
multiple 𝜁 + polarisation calculation with:
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%block species
Mg Mg 12 13 8.0
%endblock species

%block species_atomic_set
Mg "SOLVE conf=2s2 2p6 3s2 3p0|P"
%endblock species_atomic_set

For more info on this, please see the pseudoatomic solver tutorial. Add the PAW data:

%block species_pot
Mg "mg_pbe_v1_abinit.paw"
%endblock species_pot

Finally lets add a simulation cell and some atoms:

%BLOCK lattice_cart
ang
13.2119999999999997 0.0000000000000213 0.0000000000000213
0.0000000000000000 10.8379999999999992 0.0000000000000175
0.0000000000000000 0.0000000000000000 10.4299999999999997

%ENDBLOCK lattice_cart

%BLOCK positions_abs
ang
Mg 3.30300 1.99300 0.00000
Mg 1.65100 4.70200 0.00000
Mg 3.30300 0.11500 2.60800
Mg 1.65100 2.82500 2.60800
Mg 0.00000 1.99300 0.00000
Mg 4.95400 4.70200 0.00000
Mg 0.00000 0.11500 2.60800
Mg 4.95400 2.82500 2.60800
Mg 3.30300 1.99300 5.21500
Mg 1.65100 4.70200 5.21500
Mg 3.30300 0.11500 7.82300
Mg 1.65100 2.82500 7.82300
Mg 0.00000 1.99300 5.21500
Mg 4.95400 4.70200 5.21500
Mg 0.00000 0.11500 7.82300
Mg 4.95400 2.82500 7.82300
Mg 3.30300 7.41200 0.00000
Mg 1.65100 10.12100 0.00000
Mg 3.30300 5.53400 2.60800
Mg 1.65100 8.24400 2.60800
Mg 0.00000 7.41200 0.00000
Mg 4.95400 10.12100 0.00000
Mg 0.00000 5.53400 2.60800
Mg 4.95400 8.24400 2.60800
Mg 3.30300 7.41200 5.21500
Mg 1.65100 10.12100 5.21500
Mg 3.30300 5.53400 7.82300
Mg 1.65100 8.24400 7.82300

(continues on next page)
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(continued from previous page)

Mg 0.00000 7.41200 5.21500
Mg 4.95400 10.12100 5.21500
Mg 0.00000 5.53400 7.82300
Mg 4.95400 8.24400 7.82300
Mg 9.90900 1.99300 0.00000
Mg 8.25700 4.70200 0.00000
Mg 9.90900 0.11500 2.60800
Mg 8.25700 2.82500 2.60800
Mg 6.60600 1.99300 0.00000
Mg 11.56000 4.70200 0.00000
Mg 6.60600 0.11500 2.60800
Mg 11.56000 2.82500 2.60800
Mg 9.90900 1.99300 5.21500
Mg 8.25700 4.70200 5.21500
Mg 9.90900 0.11500 7.82300
Mg 8.25700 2.82500 7.82300
Mg 6.60600 1.99300 5.21500
Mg 11.56000 4.70200 5.21500
Mg 6.60600 0.11500 7.82300
Mg 11.56000 2.82500 7.82300
Mg 9.90900 7.41200 0.00000
Mg 8.25700 10.12100 0.00000
Mg 9.90900 5.53400 2.60800
Mg 8.25700 8.24400 2.60800
Mg 6.60600 7.41200 0.00000
Mg 11.56000 10.12100 0.00000
Mg 6.60600 5.53400 2.60800
Mg 11.56000 8.24400 2.60800
Mg 9.90900 7.41200 5.21500
Mg 8.25700 10.12100 5.21500
Mg 9.90900 5.53400 7.82300
Mg 8.25700 8.24400 7.82300
Mg 6.60600 7.41200 5.21500
Mg 11.56000 10.12100 5.21500
Mg 6.60600 5.53400 7.82300
Mg 11.56000 8.24400 7.82300
%ENDBLOCK positions_abs

[Gibson1993] A. Gibson, R. Haydock and J. P. LaFemina. Ab initio electronic-structure computations with the recursive
method, Phys. Rev. B. 47, 9229 (1993)

[Aarons2018] J. Aarons and C.-K. Skylaris. Electronic annealing Fermi operator expansion for DFT calculations on
metallic systems, J. Chem. Phys. 148, 074107 (2018)
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3.6.1 Basic principles
This manual describes how to run density mixing (kernel DIIS) calculations in ONETEP. Currently, kernel DIIS is an
alternative to the LNV density kernel optimisation in the ONETEP inner loop (where the NGWFs are fixed). Please
note that:

• The current code is experimental and might be unstable.

• Kernel DIIS currently can only perform calculations on insulators, where the constraint of idempotency of the
density matrix holds (i.e., the Kohn-Sham occupancies are integers, 1 for the valence states and 0 for the con-
ductions states.)

• Kernel DIIS is cubic-scaling, always, even if the density matrix is truncated and localised.

• Use only in the rare occasions where LNV optimisation might not be optimal.

Density mixing is a type of self-consistent cycle used to minimise the total energy of the system. Currently, there
are two types of mixing implemented in ONETEP: density kernel mixing or Hamiltonian mixing. In both cases,
Hamiltonian diagonalisation is required, which makes the method cubic-scaling. The current implementation includes
the linear mixing, ODA mixing [Cances2000], [Cances2001], Pulay mixing [Pulay1980], LiSTi [Wang2011] and LiSTb
[Chen2011] mixing schemes. Pulay, LiSTi and LiSTb offer the best performance of all, but they must be used in
conjunction with linear mixing in order to obtain numerical stability.

3.6.2 Compilation
By default, ONETEP is linked against the Lapack library [Lapack_web] for linear algebra. The Lapack eigensolver
DSYGVX [DSYGVX], can only be executed in one CPU at a time. Therefore, kernel DIIS calculations with Lapack
are limited to small systems (a few tens of atoms). Calculations on large systems are possible if, instead, ONETEP is
linked against ScaLapack library [Scalapack_web] during compilation time. The ScaLapack eigensolver, PDSYGVX
[PDSYGVX], can be run in parallel using many CPUs simultaneously. Moreover, ScaLapack can distribute the storage
of dense matrices across many CPUs, thus allowing to increase the total memory allocated to a given calculation in a
systematic manner, simply by requesting more processors. For the compilation against ScaLapack to take effect, the
flag -DSCALAPACK must be specified during the compilation of ONETEP.

3.6.3 Commands for the inner loop
Mixing schemes

The keyword
kernel_diis_scheme: string [String, default kernel_diis_scheme: NONE]

is used to select the mixing method during the kernel-DIIS loop. By default, this keyword takes the value “NONE”,
which disables kernel DIIS and tells the program to proceed with the LNV optimisation. The following options are
available:

• kernel_diis_scheme: DKN_LINEAR

linear mixing of density kernels. The new input density kernel is built from the in and out density kernels of the
current iteration as 𝐾𝑖𝑛

𝑛+1 = (1 − 𝜆)𝐾𝑛
𝑖𝑛 + 𝜆𝐾𝑛

𝑜𝑢𝑡.

• kernel_diis_scheme: HAM_LINEAR

linear mixing of Hamiltonians. The new input Hamiltonian is built from the and out Hamiltonians of the
current iteration as 𝐻𝑖𝑛

𝑛+1 = (1 − 𝜆)𝐻𝑛
𝑖𝑛 + 𝜆𝐻𝑛

𝑜𝑢𝑡.

• kernel_diis_scheme: DKN_PULAY

Pulay mixing of density kernels (see Ref. [Pulay1980]). The new input density kernel is built as a linear
combination of the output density kernels of the 𝑁𝑚𝑖𝑥 previous iterations as
𝐾𝑖𝑛

𝑛+1 =
∑︀𝑛

𝑚=𝑛−𝑁𝑚𝑖𝑥 𝜆𝑚𝐾
𝑚
𝑜𝑢𝑡. Pulay mixing requires the storage of 𝑁𝑚𝑖𝑥 matrices.
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• kernel_diis_scheme: HAM_PULAY

Pulay mixing of Hamiltonians (see Ref. [Pulay1980]). The new input Hamiltonian is built as a linear
combination of the output Hamiltonians of the 𝑁𝑚𝑖𝑥 previous iterations as 𝐻𝑖𝑛

𝑛+1 =
∑︀𝑛

𝑚=𝑛−𝑁𝑚𝑖𝑥 𝜆𝑚𝐻
𝑚
𝑜𝑢𝑡.

Pulay mixing requires the storage of 𝑁𝑚𝑖𝑥 matrices.

• kernel_diis_scheme: DKN_LISTI

LiSTi mixing of density kernels (see Ref. [Wang2011]). The new input density kernel is built as a linear
combination of the output density kernels of the 𝑁𝑚𝑖𝑥 previous iterations as
𝐾𝑖𝑛

𝑛+1 =
∑︀𝑛

𝑚=𝑛−𝑁𝑚𝑖𝑥 𝜆𝑚𝐾
𝑚
𝑜𝑢𝑡. LiSTi mixing requires the storage of 4 ×𝑁𝑚𝑖𝑥 matrices.

• kernel_diis_scheme: HAM_LISTI

LiSTi mixing of Hamiltonians (see Ref. [Wang2011]). The new input Hamiltonian is built as a linear
combination of the output Hamiltonians of the 𝑁𝑚𝑖𝑥 previous iterations as 𝐻𝑖𝑛

𝑛+1 =
∑︀𝑛

𝑚=𝑛−𝑁𝑚𝑖𝑥 𝜆𝑚𝐻
𝑚
𝑜𝑢𝑡.

LiSTi requires the storage of 4 ×𝑁𝑚𝑖𝑥 matrices.

• kernel_diis_scheme: DKN_LISTB

LiSTb mixing of density kernels (see Ref. [Chen2011]). The new input density kernel is built as a linear
combination of the output density kernels of the 𝑁𝑚𝑖𝑥 previous iterations as
𝐾𝑖𝑛

𝑛+1 =
∑︀𝑛

𝑚=𝑛−𝑁𝑚𝑖𝑥 𝜆𝑚𝐾
𝑚
𝑜𝑢𝑡. LiSTb mixing requires the storage of 4 ×𝑁𝑚𝑖𝑥 matrices.

• kernel_diis_scheme: HAM_LISTB

LiSTb mixing of Hamiltonians (see Ref. [Chen2011]). The new input Hamiltonian is built as a linear
combination of the output Hamiltonians of the 𝑁𝑚𝑖𝑥 previous iterations as 𝐻𝑖𝑛

𝑛+1 =
∑︀𝑛

𝑚=𝑛−𝑁𝑚𝑖𝑥 𝜆𝑚𝐻
𝑚
𝑜𝑢𝑡.

LiSTb mixing requires the storage of 4 ×𝑁𝑚𝑖𝑥 matrices.

• kernel_diis_scheme: DIAG

Hamiltonian diagonalisation only - no mixing takes place. Strongly NOT recommended.

NOTE: linear mixing can be used simultaneously with Pulay, LiSTi or LiSTb mixing to create a history of
density kernels/Hamiltonians with optimal numerical properties. See the keywords kernel_diis_coeff and
kernel_diis_linear_iter in the section on basic principles for more information.

Basic setup: controlling the mix

• kernel_diis_coeff: x [Real, default kernel_diis_coeff: 0.1]. Linear-mixing 𝜆 coefficient. Must
be in the range [0, 1]. If set to a negative value, the ODA method (see Refs. [Cances2000], [Cances2001]) will
automatically calculate the optimal value of 𝜆. The value of kernel_diis_coeff can be made arbitrarily small
in order to attain numerical stability. However, this can make convergence slow. A small value can be used in
order to create a history of matrices before Pulay, LiSTi or LiSTb mixing. A value close to 1 will make the
calculation potentially unstable.

• kernel_diis_linear_iter: n [Integer, default kernel_diis_linear_iter: 5]. Number of linear
mixing iterations before Pulay, LiSTi or LiSTb mixing. This keyword will create and store a history of n previous
matrices generated by linear mixing before Pulay, LiSTi or LiSTb mixing begin. Required for large systems in
order to achieve stability.

• kernel_diis_size: n [Integer, default kernel_diis_size: 10]. Number of matrices (𝑁𝑚𝑖𝑥) to be
mixed with the Pulay, LiSTi or LiSTb schemes.

• kernel_diis_maxit: n [Integer, default kernel_diis_maxit: 25]. Maximum number of iterations dur-
ing the density mixing inner loop.

Tolerance thresholds

• kernel_diis_threshold: x [Real, default kernel_diis_threshold: 1.0e-9]. Numerical conver-
gence threshold for the DIIS inner loop. Use in conjunction with kernel_diis_conv_criteria.

• kernel_diis_conv_criteria: string [String, default kernel_diis_conv_criteria: 1000]. Select
the convergence criteria for the DIIS inner loop.kernel_diis_conv_criteria takes a string value 4 characters
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long. Each position acts as a logical switch, and can only take the values “1” (on) or “0” (off). The order is the
following:

– Position 1: residual |𝐾𝑜𝑢𝑡 −𝐾𝑖𝑛|, if density kernel mixing, or |𝐻𝑜𝑢𝑡 −𝐻𝑖𝑛|, if Hamiltonian mixing.

– Position 2: Hamiltonian-density kernel commutator.

– Position 3: band-gap variation between two consecutive iterations (in Hartree).

– Position 4: total energy variation between two consecutive iterations (in Hartree).

For example, kernel_diis_conv_thres: 1101 will enable criteria 1,2 and 4 and disable criterion 3.

Advanced setup: level shifter

Extra stability can sometimes be achieved if the conduction energy values are artificially increased. This technique is
known as level-shifting. See Ref. [Saunders1973] for further details.

• kernel_diis_lshift: x units [Real physical, default kernel_diis_lshift: 1.0 Hartree]. Energy
shift of the conduction bands.

• kernel_diis_ls_iter: n [Integer, default kernel_diis_ls_iter: 0]. Total number of DIIS iterations
with level-shifting enabled.

3.6.4 Commands for the outer loop
The standard ONETEP commands for NGWF optimisation apply.

3.6.5 Restarting a kernel DIIS calculation
• write_denskern: T/F [Boolean, default write_denskern: F]. Save the last density matrix on a file.

• read_denskern: T/F [Boolean, default read_denskern: F]. Read the density kernel matrix from a file,
and continue the calculation from this point.

• write_tightbox_ngwfs: T/F [Boolean, default write_tightbox_ngwfs: T]. Save the last NGWFs on
a file.

• read_tightbox_ngwfs: T/F [Boolean, default read_tightbox_ngwfs: F]. Read the NGWFs from a file
and continue the calculation from this point.

If a calculation is intended to be restarted at some point in the future, then run the calculation with
write_tightbox_ngwfs: T

write_denskern: T

to save the density kernel and the NGWFs on disk. Two new files will be created, with extensions .dkn and
.tightbox_ngwfs, respectively. Then, to restart the calculation, set
read_tightbox_ngwfs: T

read_denskern: T

to tell ONETEP to read the files that were previously saved on disk. Remember to keep a backup of the output
of the first run before restarting the calculation.

3.6.6 Controlling the parallel eigensolver
Currently, only the ScaLapack PDSYGVX parallel eigensolver is available. A complete manual to this routine can be
found by following the link in Ref. [PDSYGVX]. If ONETEP is interfaced to ScaLapack, the following directives can
be used:
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• eigensolver_orfac: x [Real, default eigensolver_orfac: 1.0e-4]. Precision to which the eigen-
solver will orthogonalise degenerate Hamiltonian eigenvectors. Set to a negative number to avoid reorthogo-
nalisation with the ScaLapack eigensolver.

• eigensolver_abstol: x [Real, default eigensolver_abstol: 1.0e-9]. Precision to which the parallel
eigensolver will calculate the eigenvalues. Set to a negative number to use ScaLapack defaults.

The abovementioned directives are useful in calculations where the ScaLapack eigensolver fails to orthonormalise the
eigenvectors. In such cases, the following error will be printed in the input file:

(P)DSYGVX in subroutine dense_eigensolve returned info= 2.

Many times (although not always) this error might cause the calculation to fail.

[Cances2000] E. Cancès and C. Le Bris. Can we outperform the diis approach for electronic structure calculations?
Int. J. Quantum Chem., 79(2):82, 2000.

[Cances2001] E. Cances. Self-consistent field algorithms for Kohn–Sham models with fractional occupation numbers.
J. Chem. Phys., 114(24):10616, 2001.

[Pulay1980] P. Pulay. Convergence acceleration of iterative sequences - the case of SCF iteration. Chem. Phys. Lett.,
73(2):393, 1980.

[Wang2011] Y. A. Wang, C. Y. Yam, Y. K. Chen, and G. Chen. Linear-expansion shooting techniques for accelerating
self-consistent field convergence. J. Chem. Phys., 134(24):241103, 2011.

[Chen2011] Y. K. Chen and Y. A. Wang. LISTb: a better direct approach to LIST. J. Chem. Theory Comput.,
7(10):3045, 2011.

[Lapack_web] Lapack. http://www.netlib.org/lapack/.

[DSYGVX] Lapack DSYGVX eigensolver. http://netlib.org/lapack/double/dsygvx.f.

[Scalapack_web] ScaLapack. http://www.netlib.org/scalapack/.

[PDSYGVX] ScaLapack PDSYGVX eigensolver. http://www.netlib.org/scalapack/double/pdsygvx.f.

[Saunders1973] V. R. Saunders and I. H. Hillier. Level-shifting method for converging closed shell Hartree-Fock wave-
functions. Int. J. Quantum Chem., 7(4):699, 1973.

3.7 Empirical Dispersion Correction
Author

Max Phipps, University of Southampton

Author
Arihant Bhandari, University of Southampton

Date
November 2020

3.7.1 Theory
Energy

The modification to the total DFT energy when correcting for dispersion is given by,

𝐸𝐷𝐹𝑇−𝐷 = 𝐸𝐾𝑆−𝐷𝐹𝑇 + 𝐸𝑑𝑖𝑠𝑝 (3.15)

where the dispersion energy correction is given by raw-latex:[Vasp], [Hill2009]:
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𝐸𝑑𝑖𝑠𝑝 = −1

2
· 𝑠6 ·

𝑁𝑎𝑡∑︁
𝑖=1

𝑁𝑎𝑡∑︁
𝑗=1

*∑︁
𝐿

𝐶6,𝑖𝑗

𝑅6
𝑖𝑗

𝑓𝑑𝑎𝑚𝑝(𝑅𝑖𝑗)𝑔𝑠𝑚𝑜𝑜𝑡ℎ(𝑅𝑖𝑗) (3.16)

where:

• 𝑠6 is a DF-dependent global scaling factor,

• 𝐶6,𝑖𝑗 is a dispersion coefficient for the atom pair 𝑖𝑗,

• 𝐿 denotes all translations of the unit cell within the van der Waals radial cutoff 𝑅𝑐𝑢𝑡,

• * denotes 𝑖 ̸= 𝑗 in 𝐿 = 0

• 𝑅𝑖𝑗 is the distance |
−→
𝑅0

𝑖 −
−→
𝑅𝐿

𝑗 | between atom i in the parent cell 𝐿 = 0 and the atom j in all possible translations
𝐿,

• 𝑓𝑑𝑎𝑚𝑝(𝑅𝑖𝑗) is a damping function that is unity at large distances and zero at small distances [Hill2009],
[Grimme2006],

• 𝑔𝑠𝑚𝑜𝑜𝑡ℎ(𝑅𝑖𝑗) is smoothening function for truncating the interactions beyond van der Waals radial cutoff.

• The dispersion coefficients and the form of the damping function are dependent upon the empirical vdW correc-
tion model adopted. The damping functions for the different models are given below:

Index Description Damping function 𝑓𝑑𝑎𝑚𝑝(𝑅𝑖𝑗) vdW radii (𝑅0,𝑖𝑗)

1 Damping function of Elstner [Elstner2001]. (1 − exp(−𝑐𝑑𝑎𝑚𝑝(𝑅𝑖𝑗/𝑅0,𝑖𝑗)
7))4

𝑅0,𝑖
3+𝑅0,𝑗

3

𝑅0,𝑖
2+𝑅0,𝑗

2

2 First damping function of Wu and Yang
[Wu2002].

(1 − exp(−𝑐𝑑𝑎𝑚𝑝(𝑅𝑖𝑗/𝑅0,𝑖𝑗)
3))2

𝑅0,𝑖
3+𝑅0,𝑗

3

𝑅0,𝑖
2+𝑅0,𝑗

2

3 Second damping function of Wu and Yang
[Wu2002].

1
1+exp(−𝑐𝑑𝑎𝑚𝑝(𝑅𝑖𝑗/𝑅0,𝑖𝑗−1))

𝑅0,𝑖
3+𝑅0,𝑗

3

𝑅0,𝑖
2+𝑅0,𝑗

2

4 Damping function of D2 correction of
Grimme [Grimme2006].

1
1+exp(−𝑐𝑑𝑎𝑚𝑝(𝑅𝑖𝑗/𝑅0,𝑖𝑗−1)) 𝑅0,𝑖 +𝑅0,𝑗

where 𝑐𝑑𝑎𝑚𝑝 is a damping constant (referred to as 𝑑 within the literature of Grimme [Grimme2006] and 𝑐𝑑𝑎𝑚𝑝 by Hill
[Hill2009]) and 𝑅0,𝑖𝑗 is determined by the vdW radii of the atomic pair 𝑖 and 𝑗.

• The smoothening function has the following form for all dispersion models:

𝑔𝑠𝑚𝑜𝑜𝑡ℎ(𝑅𝑖𝑗) = 1 − 𝑒−(𝑅𝑖𝑗−𝑅𝑐𝑢𝑡)
2

• where, 𝑅𝑐𝑢𝑡 is the radial cutoff for van der Waals interactions, and can be set by the following keyword in the
input file:
vdw_radial_cutoff: x units [Real physical, default vdw_radial_cutoff: 100 bohr].

Forces

During geometry optimization, the van der Waals forces are calculated from the derivative of the dispersion energy
with respect to the ionic coordinates {𝑠𝑖}:

𝜕𝐸𝑑𝑖𝑠𝑝

𝜕𝑠𝑖
= −1

2
· 𝑠6 ·

𝑁𝑎𝑡∑︁
𝑗=1

*∑︁
𝐿

𝐶6,𝑖𝑗

𝑅6
𝑖𝑗

[︂
𝑓(𝑅𝑖𝑗)𝑔

′(𝑅𝑖𝑗) + 𝑔(𝑅𝑖𝑗)

(︂
𝑓 ′(𝑅𝑖𝑗) −

6𝑓(𝑅𝑖𝑗)

𝑅𝑖𝑗

)︂]︂
𝜕𝑅𝑖𝑗

𝜕𝑠𝑖

52 Chapter 3. Ground State Calculation Setup



ONETEP Documentation, Release 7.1.8

3.7.2 Activating the dispersion corrections
Four vdW correction options have been implemented within ONETEP. Activation of the vdW corrections within
ONETEP is achieved using the

DISPERSION

keyword followed by the dispersion index. eg. For the D2 correction of Grimme [Grimme2006],

DISPERSION 4

The exchange-correlation functionals available with optimized parameters for the dispersion models are given below:

Index Keyword Available XC functionals
1 ELSTNER BLYP, PBE, PW91, REVPBE, RPBE, XLYP.
2 WUYANG1 BLYP, PBE, PW91, REVPBE, RPBE, XLYP.
3 WUYANG2 BLYP, PBE, PW91, REVPBE, RPBE, XLYP.
4 GRIMMED2 BLYP, PBE, B3LYP.

The 𝐶6,𝑖𝑗 coefficients and the coefficients of the damping function of dispersion corrections 1–3 are optimized for
each xc functional to minimize the root mean square difference of the interaction energy from the literature values for
a selection of dispersion-dominant biological complexes from the JSCH-2005 and S22 sets [Jurecka2006]_` and the
database of Morgado [Morgado2007]. For the D2 correction of Grimme the parameters are optimized as described in
the literature [Grimme2006].

The 𝑠6 parameters are unity for dispersion corrections 1–3 and are fitted by least squares optimization of interaction
energy error for 40 noncovalently bound complexes for the D2 correction of Grimme.

In the case of using an unoptimized functional not given within the list, default unoptimized 𝑐𝑑𝑎𝑚𝑝, 𝐶6,𝑖𝑗) and 𝑅0,𝑖

values are adopted for the damping functions of Elstner or Wu and Yang as described by Hill [Hill2009] and a default
𝑠6 value of 1.00 is adopted for Grimme’s D2 correction model.

3.7.3 Overriding dispersion correction parameters
It is possible to override the default parameters of the dispersion damping functions. This option allows the user to
specify parameters for elements and functionals for which values are not given. The atom-dependent variables 𝐶6,𝑖

(used to calculate 𝐶6,𝑖𝑗), 𝑅0,𝑖 (related to the atomic vdW radius of an atom 𝑖), and 𝑛𝑒𝑓𝑓 (used in the calculation of
𝐶6,𝑖𝑗 for all damping functions excluding the D2 correction of Grimme) are modified using the

vdw_params

block. This override block applies the parameter changes to atoms by their atomic number (nzatom). eg. To override
the dispersion parameters associated with nitrogen,

%block vdw_params
! nzatom, c6coeff, radzero, neff
7 21.1200 2.6200 2.5100

%endblock vdw_params

To override the damping constant 𝑐𝑑𝑎𝑚𝑝 associated with a damping function, the keyword

vdw_dcoeff

followed by the modified damping constant parameter is used. eg.

vdw_dcoeff 11.0
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3.7.4 Boundary Conditions
The boundary conditions are set by the following keyword:

vdw_bc P/O P/O P/O

which accepts a string which should contain three characters (which may be separated by spaces), specifying the BCs
along the 𝑥, 𝑦 and 𝑧 directions of the simulation cell. ‘P’ for periodic and ‘O’ for open. In case, the keyword is not
specified, BCs set same as

ion_ion_bc.

[Vasp] https://www.vasp.at/wiki/index.php/DFT-D2

[Hill2009] Q. Hill and C-K Skylaris, Proc. R. Soc. A 465(2103):669-683, 2009

[Grimme2006] S. Grimme, J. Comput. Chem. 27(15):1787-1799, 2006

[Elstner2001] M. Elstner, P. Hobza, T. Frauenheim, S. Suhai and E. Kaxiras, J. Chem. Phys. 114(12):5149-5155, 2001

[Wu2002] Q. Wu and W. Yang, J. Chem. Phys., 116(2):515-524, 2002

[Jurecka2006] P. Jurečka, J. Šponer, J. Černýa and P. Hobza, Phys. Chem. Chem. Phys. 8:1985-1993, 2006

[Morgado2007] C. A. Morgado, J. P. McNamara, I. H. Hillier, N. A. Burton and M. A. Vincent J. Chem. Theory
Comput. 3(5):1656-1664, 2007

3.8 Using van der Waals Density Functionals
Author

Lampros Andrinopoulos, Imperial College London

Date
November 2012

3.8.1 Activating vdW-DF
The van der Waals energy is calculated in ONETEP using the van der Waals Density Functional method, developed by
Dion et al [Dion2004].

The only input variable needed to activate the vdW-DF functional is to set xc_functional VDWDF. If a
vdW_df_kernel file is not present in the working directory, it will be automatically generated.

3.8.2 Theory
The form for the exchange-correlation functional proposed by Dion et al is:

𝐸𝑥𝑐 = 𝐸revPBE
𝑥 + 𝐸PW92

𝑐 + 𝐸nl
𝑐 (3.17)

where the non-local exchange-correlation energy is given by:

𝐸nl
𝑐 =

1

2

∫︁ ∫︁
𝑑r𝑑r′𝜌(r)𝜑(r, r′)𝜌(r′) (3.18)

where 𝜌(r) is the electron density at r and 𝜑(r, r′) is the nonlocal exchange correlation kernel whose form is explained
in [Dion2004].
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Non-local correlation energy

The direct calculation of the integral in the form of Eq. (3.18) is very computationally expensive, as it involves a
six-dimensional spatial integral.

The algorithm proposed later by Roman-Perez and Soler [Roman-Perez2009] improves the efficiency of the calculation.
They observed that with the form used by Dion et al for 𝜑, the above expression can be re-written as:

𝐸nl
𝑐 =

1

2

∫︁ ∫︁
𝑑r𝑑r′𝜌(r)𝜑(𝑞, 𝑞′, 𝑟)𝜌(r′)

where 𝑟 = |r−r′|, and 𝑞 and 𝑞′ are the values of a universal function 𝑞0[𝜌(r), |∇𝜌(r)|] at r and r′. They thus proposed
a way to expand the kernel 𝜑 using interpolating polynomials 𝑝𝛼(𝑞) for chosen values 𝑞𝛼 of 𝑞, and tabulated functions
𝜑𝛼𝛽(𝑟) for the kernel corresponding to each pair of interpolating polynomials. The interpolating polynomials 𝑝𝛼 are
cubic splines that evaluate to a Kronecker delta on each respective interpolating point. A mesh of 20 interpolation
points is used in Soler’s implementation. The Soler form of the nonlocal energy can be written as:

𝜑(𝑞1, 𝑞2, 𝑟) =
∑︁
𝛼𝛽

𝜑𝛼𝛽(𝑟)𝑝𝛼(𝑞1)𝑝𝛽(𝑞2) (3.19)

The universal function 𝑞0(r) is in practice given by:

𝑞0(r) =

(︃
1 +

𝜖PW92
𝑐

𝜖LDA
𝑥

+
0.8491

9

(︁ ∇𝜌
2𝜌𝑘𝐹

)︁2)︃
𝑘𝐹 (3.20)

with 𝑘𝐹 = (3𝜋2𝜌)1/3. The quantity 𝑞0 is first “saturated” to limit its maximum value, according to:

𝑞sat
0 (𝜌, |∇𝜌|) = 𝑞𝑐

(︃
1 − exp

(︁
−

𝑚𝑐∑︁
𝑚=1

(𝑞/𝑞𝑐)
𝑚

𝑚

)︁)︃

where 𝑞𝑐 is the maximum value of the mesh of 𝑞𝛼.

To evaluate this, we first define a quantity 𝜃𝛼(r) = 𝜌(r)𝑝𝛼(𝑞(𝜌(r),∇𝜌(r)) in real space. In terms of this, Eq. (3.18)
can be written as:

𝐸nl
𝑐 =

1

2

∑︁
𝛼𝛽

∫︁ ∫︁
𝑑r𝑑r′𝜃𝛼(r)𝜃𝛽(r′)𝜑𝛼𝛽(𝑟) (3.21)

It can be shown that this can be written as a reciprocal space integral:

𝐸nl
𝑐 =

1

2

∑︁
𝛼𝛽

∫︁
𝑑k𝜃*𝛼(k)𝜃𝛽(k)𝜑𝛼𝛽(𝑘) (3.22)

Since the kernel is radially dependent in real space, it is only dependent on the magnitude of the G-vectors, hence the
kernel need only be evaluated as a 1-dimensional function 𝜑𝛼𝛽(𝑘) for each 𝛼, 𝛽.

The kernel 𝜑 and its second derivatives are tabulated for a specific set of radial points and transformed to reciprocal
space. These values are then used to interpolate the kernel at every point k in reciprocal space required to calculate
Eq. (3.22).

Kernel

This section details the evaluation of the NLXC kernel. The kernel 𝜑(r, r′) as specified by Dion et al [Dion2004] is
given by (in atomic units):

𝜑(r, r′) =
1

𝜋2

∫︁ ∞

0

𝑎2𝑑𝑎

∫︁ ∞

0

𝑏2𝑑𝑏𝑊 (𝑎, 𝑏)𝑇 (𝜈(𝑎), 𝜈(𝑏), 𝜈′(𝑎), 𝜈′(𝑏))
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where

𝑇 (𝑤, 𝑥, 𝑦, 𝑧) =
1

2

[︁ 1

𝑤 + 𝑥
+

1

𝑦 + 𝑧

]︁[︁ 1

(𝑤 + 𝑦)(𝑥+ 𝑧)
+

1

(𝑤 + 𝑧)(𝑦 + 𝑥)

]︁
,

and

𝑊 (𝑎, 𝑏) = 2
[︁
(3 − 𝑎2)𝑏 cos 𝑏 sin 𝑎

+(3 − 𝑏2)𝑎 cos 𝑎 sin 𝑏

+(𝑎2 + 𝑏2 − 3) sin 𝑎 sin 𝑏

−3𝑎𝑏 cos 𝑎 cos 𝑏
]︁
/(𝑎3𝑏3),

and

𝜈(𝑦) = 1 − 𝑒−𝛾𝑦2/𝑑2

; 𝜈′(𝑦) = 1 − 𝑒−𝛾𝑦2/𝑑′2
;

where 𝑑 = |r− r′|𝑞0(r), 𝑑′ = |r− r′|𝑞0(r′)

Following this chain of logic, it is clear that this the kernel can in fact be considered as a function only of |r−r′|, 𝑞0(r)
and 𝑞0(r′), since all other variables are dummy variables which are integrated over. The kernel can therefore be written
as

𝜑(𝑟, 𝑞0(r), 𝑞0(r′)) (3.23)

This makes it possible to evaluate the integrals above so as to tabulate the kernel values numerically for a pre-chosen
set of radial points and 𝑞0 values.

Non-local potential

Starting from (3.22), one can evaluate the potential 𝑣nl(r) corresponding to this energy, by evaluating all terms in
𝜕𝐸nl/𝜕𝑛(r). The non-local potential 𝑣nl𝑖 at point r𝑖 on the grid is thus written explicitly in terms of the derivatives of
the 𝜃𝛼 quantities with respect to the values 𝜌𝑗 at all other points on the grid:

𝑣nl𝑖 =
∑︁
𝛼

(𝑢𝛼𝑖
𝜕𝜃𝛼𝑖
𝜕𝜌𝑖

+
∑︁
𝑗

𝑢𝛼𝑗
𝜕𝜃𝛼𝑗
𝜕∇𝜌𝑗

𝜕∇𝜌𝑗
𝜕𝜌𝑖

) (3.24)

This makes use of the quantities 𝑢𝛼(r) =
∑︀

𝛽 ℱ(𝜃𝛽(k)𝜑𝛼𝛽(𝑘)): which are already calculated in the evaluation of the
energy.

Using the White and Bird [White1994] approach, Eq. (3.24) can be written as:

𝑣nl(r) =
∑︁
𝛼

(︁
𝑢𝛼(r)

𝜕𝜃𝛼(r)

𝜕𝜌(r)
−
∫︁ ∫︁

𝑖G · ∇𝜌(r′)

|∇𝜌(r′)|
𝜕𝜃𝛼(r′)

𝜕|∇𝜌(r′)|
𝑒𝑖G·(r−r′)𝑑r𝑑G

)︁
(3.25)

For this we need to calculate 𝜕𝜃
𝜕𝜌 and 𝜕𝜃

𝜕|∇𝜌| :

𝜕𝜃𝛼
𝜕𝜌

= 𝑝𝛼 + 𝜌
𝜕𝑝𝛼
𝜕𝜌

= 𝑝𝛼 + 𝜌
𝜕𝑝𝛼
𝜕𝑞

𝜕𝑞

𝜕𝜌

= 𝑝𝛼 + 𝜌
𝜕𝑝𝛼
𝜕𝑞

𝑞

𝑘𝐹

𝜕𝑘𝐹
𝜕𝜌

+ 𝜌
𝜕𝑝𝛼
𝜕𝑞

𝑘𝐹 (
𝜕𝜀𝑐
𝜕𝜌

𝜀−1
𝑥 − 𝜀𝑐𝜀

−2
𝑥

𝜕𝜀𝑥
𝜕𝜌

− 8

3(3𝜋2)2/3
𝑍

4
(∇𝜌)2𝜌−11/3)

= 𝑝𝛼 + 𝑞/3
𝜕𝑝𝛼
𝜕𝑞

+ 𝑘𝐹 𝜌
𝜕𝑝𝛼
𝜕𝑞

(
𝜕𝜀𝑐
𝜕𝜌

𝜀−1
𝑥 − 𝜀𝑐𝜀

−2
𝑥

𝜕𝜀𝑥
𝜕𝜌

− 2𝑍

3(3𝜋2)2/3
|∇𝜌|2𝜌−11/3)

𝜕𝜃𝛼
𝜕|∇𝜌|

= 𝜌
𝜕𝑝𝛼
𝜕𝑞

𝜕𝑞

𝜕|∇𝜌|
=

𝑍

2𝜌𝑘𝐹
𝜌
𝜕𝑝𝛼
𝜕𝑞

|∇𝜌| (3.26)

Combining Eqs. (3.25), (3.26) and (3.26) gives us the final expression for the nonlocal potential.
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3.8.3 Overview of computational algorithm
Module nlxc_mod

The main module for the calculation of the non-local energy and potential is nlxc_mod. The tabulation of the kernel
𝜑 is performed only if a kernel file is not found, by vdwdf_kernel.

The input required to calculate the non-local energy and potential is essentially just the density and its gradient on
the fine grid. The calculation of 𝑞 and the Fourier transformed 𝜃𝛼 from Eq. (3.22) is performed first, in the routine
nlxc_q0_theta. The derivatives of the 𝜃𝛼s with respect to the density and the module of its gradient are calculated
on-the-fly in the real-space loop for the calculation of the non-local potential 𝑣𝑛𝑙 in Eq. (3.24). This is to avoid storing
unnecessary arrays. From Eq. (3.25) two transforms are required per 𝛼 value, a forward FFT, followed by a backward
FFT for calculating the non-local potential.

Subroutines to interpolate the polynomials as well as the kernel using cubic splines are used (spline_interp and
interpolate). The interpolating polynomials 𝑝𝛼 used are Kronecker deltas, so they take the value 1 on the interpo-
lating point and are zero at the other points.

Module vdwdf_kernel

The kernel 𝜑𝛼𝛽(𝑘) is tabulated for 1024 radial reciprocal space points and 20 𝑞0 points. Gaussian quadrature is used
to calculate Eq. (3.23) and then the result is Fourier transformed. The second derivatives of the kernel are calculated
by interpolation, and also tabulated. The default name of the file is vdw_df_kernel. The program will first check if
this file exists: if it does, it will be loaded in and need not be calculated. If it does not, it will be generated from scratch
(which only takes a few minutes) and then it is written out for future re-use in the current working directory.

The format of the vdw_df_kernel file is:

N_alpha N_radial

max_radius

q_points(:)

kernel(0:N_radial,alpha,beta)

kernel2(0:N_radial,alpha,beta)

where kernel2 is the array of second derivatives of the kernel.

[Dion2004] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401
(2004).

[Roman-Perez2009] G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009).

[White1994] J. A. White and D. M. Bird, Phys. Rev. B 50, 4954 (1994).

3.9 Realspace local pseudopotential in ONETEP
Author

Jacek Dziedzic, University of Southampton

Author
Chris-Kriton Skylaris, University of Southampton
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3.9.1 Motivation
In standard ONETEP the local pseudopotential is obtained in reciprocal space by a discrete Fourier transform, by
assuming the cell is periodically repeated in space. However, there are certain use-cases, where one is interested in
the properties of an isolated (not periodically repeated) system. This is especially true if other energy terms, such the
Hartree energy or the ion-ion energy are already calculated with open boundary conditions, which is the case, e.g., for
implicit solvent calculations in ONETEP.

3.9.2 Theory
Assume that 𝑣𝑙𝑜𝑐 (�⃗�) is located on an atom 𝐴 at a position �⃗�𝐴 and we want to determine the contribution to the local
pseudopotential coming from this atom. Owing to the spherical symmetry of the potential, we have

𝑣𝑙𝑜𝑐,𝐴 (�⃗�) = 𝑣𝑙𝑜𝑐

(︁
�⃗� − �⃗�𝐴

)︁
= 𝑣𝑙𝑜𝑐

(︁
|�⃗� − �⃗�𝐴|

)︁
.

The local pseudopotential is given to us in terms of its continuous Fourier coefficients, 𝑣𝑙𝑜𝑐 (|⃗𝑔|), read from a recpot
file. To generate the pseudopotential at a point �⃗� in real space, we use the continuous Fourier transform:

𝑣𝑙𝑜𝑐

(︁
�⃗� − �⃗�𝐴

)︁
=

1

(2𝜋)
3

∫︁
𝑣𝑙𝑜𝑐 (�⃗�)𝑒𝑖�⃗�·(�⃗�−�⃗�𝐴)𝑑�⃗� =

∫︁
𝑣𝑙𝑜𝑐 (�⃗�)𝑒𝑖�⃗�·�⃗�𝑑�⃗�,

where we have set �⃗� = �⃗� − �⃗�𝐴. Expanding the plane wave 𝑒𝑖�⃗�·�⃗� in terms of localised functions, we get

𝑣𝑙𝑜𝑐,𝐴 (�⃗�) =
1

(2𝜋)
3

∫︁
𝑣𝑙𝑜𝑐 (�⃗�) ·

[︃
4𝜋

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑖𝑙𝑗𝑙 (𝑔𝑥)𝑍𝑙𝑚 (Ω�⃗�)𝑍𝑙𝑚 (Ω�⃗�) 𝑑�⃗�

]︃
,

𝑣𝑙𝑜𝑐,𝐴 (�⃗�) =
1

(2𝜋)
3 4𝜋

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑖𝑙𝑍𝑙𝑚 (Ω�⃗�)

∫︁
𝑣𝑙𝑜𝑐 (�⃗�)𝑗𝑙 (𝑔𝑥)𝑍𝑙𝑚 (Ω�⃗�) 𝑑�⃗�⏟  ⏞  

𝐼1

. (3.27)

The orthogonality of harmonics means that all of the terms, except for that of 𝑙 = 𝑚 = 0, disappear and, after a change
of coordinates (𝑔2 sin 𝜃 being the Jacobian), we obtain a new expression for the integral in ((3.27)):

𝐼1 =

2𝜋∫︁
0

𝜋∫︁
0

𝑍𝑙𝑚 (Ω�⃗�)𝑍00 sin 𝜃 𝑑𝜃 𝑑𝜙 ·
∞∫︁
0

𝑣𝑙𝑜𝑐 (𝑔)𝑗𝑙 (𝑔𝑥) 𝑔2𝑑𝑔.

With 𝑍00 = 1/
√

4𝜋, the double integral simplifies to 1 and we obtain, after realizing that all terms except for 𝑙 = 0
disappear,

𝑣𝑙𝑜𝑐,𝐴 (�⃗�) =
1

(2𝜋)
3 4𝜋

∫︁
𝑣𝑙𝑜𝑐 (𝑔)𝑗0(𝑔𝑥) 𝑔2𝑑𝑔 =

1

(2𝜋)
3 4𝜋

∫︁
𝑣𝑙𝑜𝑐 (𝑔)

sin (𝑔𝑥)

𝑔𝑥
𝑔2 𝑑𝑔.

ONETEP uses a convention where an additional factor of 4𝜋 is needed when transforming between real and reciprocal
space. Thus the final formula for the local pseudopotential at a distance of 𝑥 from an atom of species 𝑠 becomes

𝑣𝑠𝑙𝑜𝑐 (𝑥) =
2

𝜋

∞∫︁
0

𝑣𝑠𝑙𝑜𝑐 (𝑔)
sin (𝑔𝑥)

𝑥
𝑔 𝑑𝑔. (3.28)

3.9.3 Implementation
In practice, however, it is not possible to evaluate the integral (3.28) with ∞ as the upper limit, because 𝑣𝑠𝑙𝑜𝑐 (𝑔) is
defined in the recpot file only up to a 𝑔𝑚𝑎𝑥 of 100 Å−1. Furthermore, to ensure the results are consistent with standard
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ONETEP, we must lower this limit even more, to prevent aliasing, as high 𝑔’s will not be representable on our reciprocal
space grid. Thus, in practice we evaluate

𝑣𝑠𝑙𝑜𝑐 (𝑥) =
2

𝜋

𝑔𝑐𝑢𝑡∫︁
0

𝑣𝑠𝑙𝑜𝑐 (𝑔)
sin (𝑔𝑥)

𝑥
𝑔 𝑑𝑔, (3.29)

where 𝑔𝑐𝑢𝑡 = 2𝜋max (𝑑1, 𝑑2, 𝑑3) (𝑑𝑖 being the grid spacings of pub_cell) and will usually be in the order of 20-30
𝑎−1
0 .

The integral is evaluated for 𝑥’s on a fine radial grid running from 0 to the maximum possible distance, which is the
magnitude of the cell diagonal. The calculation is distributed across nodes (each node deals with a portion of the fine
radial grid). The total pseudopotential for any point on the real space fine grid is evaluated by interpolation from the
fine radial grid and by summing over all atoms. This calculation is distributed across nodes as well (each node deals
with its own slabs of the real space fine grid). The default number of points in the radial grid is 100000 and can be
changed with the directive openbc_pspot_finetune_nptsx.

The integral (3.29) is difficult to evaluate numerically. One source of difficulties is the oscillatory nature of sin (𝑔𝑥).
For larger cells, where the maximum interesting 𝑥 is in the order of 100 𝑎0, this oscillates so rapidly that the resolution
of the recpot file (0.05 Å−1) is not enough and it becomes necessary to interpolate 𝑣𝑠𝑙𝑜𝑐 (𝑔), and the whole integrand,
between the 𝑔-points specified in the recpot file. The result of the interpolation is stored on a fine radial 𝑔-grid, which
is 𝑓 times as fine as the original radial 𝑔-grid of the recpot file. 𝑓 is determined automatically so that every full period
of sin (𝑔𝑥) is sampled by at least 50 points. For typical cells, this yields 𝑓 in the order of 5-50, depending on the cell
size. Alternatively, 𝑓 may be specified manually by the openbc_pspot_finetune_f directive.

Another difficulty is caused by the singularity in 𝑣𝑠𝑙𝑜𝑐 (𝑔) as 𝑔 → 0, where the behaviour of 𝑣𝑠𝑙𝑜𝑐 (𝑔) approaches that of
−𝑍𝑠/𝑔

2. Although the integral is convergent, this singularity cannot be numerically integrated in an accurate fashion.
The singularity also presents problems when interpolating between the 𝑔 points – the usual cubic interpolation of
services_1d_interpolation becomes inaccurate at low 𝑔’s. The second problem is solved by subtracting the
Coulombic potential, −𝑍𝑠/𝑔

2, before interpolation to the fine radial 𝑔-grid and then adding it back. The first problem
is difficult to treat. An approach where at low 𝑔’s 𝑣𝑠𝑙𝑜𝑐 (𝑔) is assumed to be exactly equal to −𝑍𝑠/𝑔

2 (which allows the
low-𝑔 part of integral ((3.29)) to be evaluated analytically) gives better results than attempting to numerically integrate
the singularity, but is not accurate enough, leading to errors in the order of 50 − 100𝜇Ha in the energy for a hydrogen
atom test-case (with a total energy of ca. 0.477Ha. Attempting to fit 𝐴/𝑔2 + 𝐵/𝑔 + 𝐶 (which also allows analytical
integration at low 𝑔’s) gives similar results. The numerical inaccuracy presents itself as a near-constant shift of the
obtained pseudopotential and clearly affects total energy.

To solve this problem, we observe that the local pseudopotential can be split into a long-range part and a short-range
part:

𝑣𝑠𝑙𝑜𝑐 (𝑥) = 𝑣
𝑠(𝑙𝑜𝑛𝑔)
𝑙𝑜𝑐 (𝑥) + 𝑣

𝑠(𝑠ℎ𝑜𝑟𝑡)
𝑙𝑜𝑐 (𝑥),

𝑣𝑠𝑙𝑜𝑐 (𝑔) = 𝑣
𝑠(𝑙𝑜𝑛𝑔)
𝑙𝑜𝑐 (𝑔) + 𝑣

𝑠(𝑠ℎ𝑜𝑟𝑡)
𝑙𝑜𝑐 (𝑔).

Following [Martyna1999], we observe that 𝑣𝑠(𝑙𝑜𝑛𝑔)𝑙𝑜𝑐 (𝑔) = 4𝜋
𝑔2 exp

(︁
−𝑔2

4𝛼2

)︁
(where 𝛼 is an adjustable parameter, control-

lable with openbc_pspot_finetune_alpha) which easily transforms to real space to give 𝑣𝑠(𝑙𝑜𝑛𝑔)𝑙𝑜𝑐 (𝑥) = − erf (𝛼𝑥)
𝑥

and is conveniently calculated in real space. The short-range part (corresponding to high 𝑔’s) is 𝑣𝑠(𝑙𝑜𝑛𝑔)𝑙𝑜𝑐 (𝑔) =

𝑣𝑠𝑙𝑜𝑐 (𝑔) ·
[︁
1 − exp

(︁
−𝑔2

4𝛼2

)︁]︁
. In this way, the integral ((3.29)) can be rewritten as

𝑣𝑠𝑙𝑜𝑐 (𝑥) = −erf (𝛼𝑥)

𝑥
+

2

𝜋

𝑔𝑐𝑢𝑡∫︁
0

𝑣𝑠𝑙𝑜𝑐 (𝑔) ·
[︂
1 − 𝑒𝑥𝑝

(︂
−𝑔2

4𝛼2

)︂]︂
· sin (𝑔𝑥)

𝑥
𝑔 𝑑𝑔

⏟  ⏞  
𝐼𝑠(𝑥)

.
(3.30)

Owing to the
[︁
1 − exp

(︁
−𝑔2

4𝛼2

)︁]︁
factor, the integral 𝐼𝑠(𝑥) is no longer singular at 𝑔 = 0 and can be accurately evaluated

numerically, if 𝛼 is large enough. Small values of 𝛼 make the numerical integration more difficult (requiring larger
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values for 𝑓 ), because the oscillations at low 𝑔’s are large in magnitude. Larger values of𝛼 allow for easy integration, but
they cause the long-range behaviour to “kick in” earlier. As this long-range behaviour is calculated in real space, it lacks
the oscillations that are present in standard ONETEP because of a finite value for 𝑔𝑐𝑢𝑡. Even though these oscillations
are an artifact, obtaining a long-range behaviour that is physically more correct, but without the oscillations, leads to
aliasing in reciprocal space and to a departure from the results of standard ONETEP. For this reason we want 𝛼 to be
as small as possible, without negatively impacting the numerical integration. The accuracy of the obtained method can
be judged by comparing the real space tail of the obtained pseudopotential with the Coulombic potential. Since we
expect the obtained pseudopotential to oscillate slightly around −𝑍𝑠/𝑥, a good measure of accuracy, which we will

call 𝑏, is the average value of
𝑣𝑠𝑙𝑜𝑐 (𝑥) − (−𝑍𝑠/𝑥)

−𝑍𝑠/𝑥
over the tail of the pseudopotential, from, say, 5𝑎0 to the maximum

𝑥 for which 𝑣𝑠𝑙𝑜𝑐 (𝑥) is evaluated. Ideally, 𝑏 should be zero. Numerical inaccuracies will cause a shift in 𝑣𝑠𝑙𝑜𝑐 (𝑥) which
will present itself as a finite, non-zero value of 𝑏. Naïve numerical integration by a direct calculation of ((3.29)) led,
for our test-case, to 𝑏 in the order of 0.01, which can be reduced by an order of magnitude by using a very fine radial
𝑔-grid (high value of 𝑓 ). Subtracting out the Coulombic potential and integrating only the difference between 𝑣𝑠𝑙𝑜𝑐 (𝑔)
and the Coulombic potential numerically, while integrating the remaining part analytically reduced b to about 0.0005.
Application of the proposed formula ((3.30)) yielded 𝑏 = 5 · 10−8 for 𝛼 = 0.5/𝑙 and 𝑏 = 3 · 10−9 for 𝛼 = 0.1/𝑙 with
a suitably large 𝑓 to ease the numerical integration at low 𝑔 (𝑙 is the box length). With the default value for 𝑓 , the total
energy is not sensitive (to more than 0.0001%) to the choice of 𝛼, provided it is in a resonable range of 0.1/𝑙 − 2/𝑙.
The value of 0.3/𝑙 was chosen as a default.

The calculation of the realspace local pseudo is implemented in norm_conserv_pseudo.F90 in the subroutine
pseudo_local_on_grid_openbc and its internal subroutine internal_Is_of_x, which evaluates 𝐼𝑠(𝑥). A typ-
ical calculation would use default values for all the parameters. The realspace local pseudo is off by default and is
turned on automatically when smeared ions or implicit solvent is in use. It can also be forced to be on (for development
tests) by using openbc_pspot T.
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Table 3.1: Directives controlling the calculation of the realspace local
pseudo

Directive Action Rationale for use
openbc_pspot T Forces the realspace

pseudo to be used
Normally not needed, the realspace pseudo
will be turned on when necessary. This di-
rective allows turning it on even though the
Hartree potential calculation and Ewald cal-
culation proceed in reciprocal space, which
might be useful for certain test calcula-
tions. A related directive, openbc_ion_ion
T may be used in conjuction, to replace
Ewald with a direct Coulombic sum.

openbc_pspot_finetune_f 𝑣𝑎𝑙𝑢𝑒 [𝑣𝑎𝑙𝑢𝑒
is an integer.]

Sets the fineness pa-
rameter, 𝑓 , to 𝑣𝑎𝑙𝑢𝑒.

Default value of -1 causes 𝑓 to be determined
automatically. Positive values can be used to
increase 𝑓 to obtain extra accuracy. Decreas-
ing 𝑓 will reduce accuracy and is not recom-
mended.

openbc_pspot_finetune_nptsx 𝑣𝑎𝑙𝑢𝑒
[𝑣𝑎𝑙𝑢𝑒 is an integer.]

Sets the number of
radial grid points
(distinct values of
𝑥) to 𝑣𝑎𝑙𝑢𝑒.

The default of 100000 should be enough,
unless huge boxes are used, where it might
make sense to increase it. Decreasing this
value is not recommended, as it will impact
accuracy.

openbc_pspot_finetune_alpha 𝑣𝑎𝑙𝑢𝑒
[𝑣𝑎𝑙𝑢𝑒 is a real.]

Sets the short-
range-long-range
crossover parameter
𝛼 to 𝑣𝑎𝑙𝑢𝑒/𝑙, where
𝑙 is the maximum
dimension of the
cell.

A default value of 0.3 should be OK for
most applications. Increasing 𝛼 will reduce
the numerical inaccuracy in 𝐼𝑠(𝑥), but will
cause the long-range behaviour to lack the
oscillations of usual ONETEP and thus in-
crease aliasing. Decreasing 𝛼 will make
𝐼𝑠(𝑥) inaccurate, which can be helped, to a
certain extent, by increasing 𝑓 .

[Martyna1999] G. J. Martyna and M. E. Tuckerman J. Chem. Phys. 110 (1999).
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This manual pertains to ONETEP versions v6.0.0 and later.
For older versions, see separate documentation on the ONETEP website.
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Major changes relative to v6.0.0:

• Soft-sphere model added in v6.1.1.8
• Surface Accessible Volume added in v6.1.3.0
• Conjugate gradient solver added in v6.1.3.6
• Self-consistent Continuum Solvation (SCCS) model added in v6.1.11.0
• Solvation forces in PBC added in v6.1.15.0
• Electrolyte forces added in v6.1.15.5
• Forces for soft-spheres solvation model added in v6.1.15.9

WARNING to users of v6.1.3.0 and later.
The method used to calculate the surface area of the dielectric cavity was changed in version 6.1.3.0. The surface area
is used to calculate the ∆𝐺npol component of the solvation. The new method is more mathematically consistent, but
gives approximately 20% smaller values for the surface area. By default, we use the new method, which means the
value of ∆𝐺solv and may not agree with earlier versions. If you need full compatibility with versions before 6.1.3, set
is_apolar_sasa_definition to isodensity.

3.10.1 Overview of capabilities
First and foremost, ONETEP implements the Minimal Parameter Solvent Model (MPSM), first presented in Ref.
[Dziedzic2011]. A more detailed description, including guidelines on the choice of parameters, is given in Ref.
[Dziedzic2013]. MPSM offers a very accurate treatment of the polar (electrostatic) solvation contribution, and a rather
simple, yet still accurate, treatment of the apolar terms: cavitation, dispersion and repulsion. MPSM is based on the
Fattebert and Gygi model (later extended by Scherlis et al.) [Scherlis2006].

Two other models are available – Fisicaro’s soft-sphere model (SSM) [Fisicaro2017], and Andreussi’s Self-Consistent
Continuum Solvation (SCCS) model [Andreussi2012].

Implicit solvation calculations in ONETEP can be performed, regardless of the choice of model, either in open bound-
ary conditions (OBC) or in periodic boundary conditions (PBC), with OBC assumed by default. The solute can be
immersed in pure solvent (necessitating the solution of the Poisson equation (PE)) or in solvent with electrolyte (lead-
ing to the Poisson-Boltzmann equation (PBE)). Solvation energies can be calculated by running a calculation in vacuum
first, followed by a calculation in solvent. This can be done either automatically (“auto solvation”) or manually. Apart
from energy terms due to solvation, ONETEP calculates solvation contributions to forces. It is thus possible to per-
form in-solvent geometry optimisation and molecular dynamics (with difficulty). Forces are supported both in OBC
and PBC calculations since v6.1.15.0. Additional solvent exclusion regions can be specified to keep the solvent from
predefined regions of the simulation cell. These currently work only in OBC.

3.10.2 The models
ONETEP includes solvation effects by defining a smooth dielectric cavity around the solute (“solute cavity”). In contrast
to PCM-based approaches, the transition from a dielectric permittivity of 1 (in the immediate vicinity of the solute) to
the bulk value of the solvent is smooth, rather than discontinuous. Thus, there is no “cavity surface”, strictly speaking,
but rather a thin region of space where the transition takes place. For MPSM and SCCS the cavity and the transition
are defined by a simple function relating the dielectric permittivity at a point, 𝜖(�⃗�), to the electronic density there,
𝑛(�⃗�), yielding an isodensity model. For SSM the transition is also smooth, but the cavity is defined by atom-centered
overlapping spheres.

ONETEP offers two modes of operation – one, where 𝑛(�⃗�) is the current electronic density (“the self-consistently
updated cavity mode”), and another one, where 𝑛(�⃗�) is fixed, usually to the converged in-vacuum density (“the fixed
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cavity mode”).

For MPSM the dielectric function 𝜖(·), defined in Ref. [Scherlis2006], Eq. 7, and in Ref. [Dziedzic2011], Eq. 1
depends on two parameters: 𝜌0, the electronic density threshold, where the transition takes place; and 𝛽, which controls
the steepness of the change in 𝜖. A physical constant, 𝜖∞, the bulk permittivity of the solvent completes the description

For SCCS the dielectric function is defined in Ref. [Andreussi2012] in Eqs. 41-42. It has two parameters: 𝜌min and
𝜌max. A physical constant, 𝜖0, the bulk permittivity of the solvent completes the description. This is the same as 𝜖∞ in
the MPSM model, only Ref. [Andreussi2012] chose a different notation.

For SSM the dielectric function is described in the section on the soft sphere cavity model below.

Once a solute cavity is constructed, the Poisson equation is then solved to obtain the potential due to the molecular
density in the nonhomogeneous dielectric. A more general case, where electrolyte ions can be added to the solvent
(specified via concentrations), requires solving the Poisson-Boltzmann equation.

Solute cavity

In the MPSM and SCCS models the dielectric cavity is determined wholly by the electronic density, freeing the model
of any per-species parameters (such as van der Waals radii). Thus, the cavity will change shape every time the electronic
density changes. From the physical point of view this is good, since it means the density can respond self-consistently
to the polarisation of the dielectric and vice versa. From the computational point of view this is rather inconvenient,
because it requires extra terms in the energy gradients (see e.g. Ref. [Scherlis2006], Eqs. 5 and 14). Because these
terms tend to vary rapidly over very localised regions of space, their accurate calculation usually requires unreasonably
fine grids and becomes prohibitively difficult for larger molecules.

Fixed cavity

One workaround for the above problem, which is straightforward, but introduces an approximation, consists in fixing
the cavity and not allowing it to change shape. This is realised by performing an in-vacuum calculation first, then
restarting the solvated calculation from the converged in-vacuum density, and using this density to generate the cavity
that then remains fixed for the duration of the solvated calculation. Both calculations are self-consistent (in the DFT
sense), only the cavity is not self-consistently updated in the in-solvent calculation.

How good is this approximation? From experience, it yields solvation energies within several percent of the accurate,
self-consistent calculation, cf. Ref. [Dziedzic2011]. More specifically, the error in solvation energy is expected to be
less than 3-4% percent for charged species and less than 1% for neutral species.

If you can spare the computational resources, it would be good to test it on a representative molecule, by comparing
the solvation energy against a calculation with a self-consistently updated cavity.

As the cavity remains fixed, the difficult extra terms no longer need to be calculated, and the memory and CPU require-
ments are significantly reduced (because the grid does not need to be made finer). It is thus the recommended solution.
The fixed cavity mode is activated by is_dielectric_model FIX_INITIAL, which is the default setting.

If embedded mean field theory (EMFT) is in use alongside the implicit solvent model, a choice can be made about
whether the in-vacuum density is calculated using the standard density kernel (calculated at the lower level of theory),
or the EMFT density kernel. In most situations, this should not strongly affect results, especially if the active region in
EMFT is far from the edge of the cavity. This can be controlled using the keyword is_emft_cavity, which is false by
default. This has only been tested for the fixed cavity approach, and not the self-consistent cavity approach. For more
information, please see the EMFT documentation.

Self-consistently updated cavity

If one insists on performing calculations with the solute cavity self-consistently responding to changes in density (as
in Ref. [Scherlis2006]), this can be achieved by is_dielectric_model SELF_CONSISTENT. As mentioned earlier,
this is costly, because it almost always requires grids that are finer than the default. The relevant grid (“fine grid”) can
be made finer by fine_grid_scale n, with n > 2 (which is the default). Typically one would use 3, you might be
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able to get away with 2.5, you might need 3.5 or even more. The memory and CPU cost increase with the cube of this
value, so, for instance, when using fine_grid_scale 3.5 one would expect the computational cost to increase by a
factor of (3.5/2)

3 ≈ 5.36.

Even when using much finer grids, the additional gradient term due to the self-consistently updated cavity poses nu-
merical difficulties. This is especially true if the changes in the density are rapid. For this reason, even if it is technically
possible to run a calculation in solvent without a preceding calculation in vacuum, it is not recommended to do so –
the initial, dramatic changes in the density will likely prove problematic. It will be much easier to run an in-vacuum
calculation to convergence, and to restart a calculation in solvent from there. The auto solvation functionality (see
section on this below) makes this easy.

Soft Sphere Cavity Model

In addition to MPSM and SCCS, the soft sphere cavity model of Fisicaro et al. (Ref. [Fisicaro2017]) has been imple-
mented to provide a dielectric cavity function closer to the standard per-species parametrisation models. This feature is
especially useful when the system under study requires significantly different solvation radii for its constituent species.
This contrasts with MPSM, which applies the parameter controlling the dielectric cavity shape (the isodensity contour)
globally, which leads to the dielectric cavity being too large/small for particular species for a single input isodensity
value.

The dielectric cavity within the soft sphere model is composed of a set of interlocking, atom-centered spheres with
radii assigned to each atom. Much like MPSM, the dielectric function for each atom varies smoothly from vacuum
to bulk permitivity. The dielectric functions themselves are defined by: i) the soft sphere radius set by default by
Alvarez’s database of van der Waals’ radii (Ref. [Alvarez2013]) or manually set in the is_soft_sphere_radii
block. The default radii can be uniformly scaled using is_soft_sphere_scale. ii) The steepness of the transi-
tion from vacuum to bulk permitivity is controlled by is_soft_sphere_delta. To activate the soft sphere cavity
model, set is_dielectric_function to ’soft_sphere’. By default, is_soft_sphere_scale is set to 1.33 and
is_soft_sphere_delta to 0.5, as determined by minimizing the error of the solvation free energy against empir-
ical data for a set of small neutral, organic molecules. These cavity radii may not give accurate solvation energies for
heavier elements/system types, and it is encouraged to perform further parametrization to minimize error with respect
to selected experimental data. Forces for the soft sphere cavity model have been implemented.

Apolar terms: cavitation energy

All three models include the apolar cavitation term in the solvent-accessible surface-area (SASA) approximation, thus
assuming the cavitation energy to be proportional to the surface area of the cavity, the constant of proportionality being
the (actual physical) surface tension of the solvent, 𝛾, and the constant term being zero. The cavitation energy term is
calculated and added automatically, unless is_include_apolar F is explicitly stated. Surface tension of the solvent
has to be specified (otherwise the default for water near room temperature (about 0.074 N/m) will be used). This can
be done using is_solvent_surf_tension. Keep in mind that the apolar term is scaled by default to account for
dispersion and repulsion (see section on this below). The scaling is controlled by is_apolar_scaling_factor, and
the default is not unity.

Apolar terms: dispersion-repulsion energy

ONETEP includes a simple, approximate way for modeling solute-solvent dispersion-repulsion apolar energy term.
This greatly improves the quality of obtained solvation energies for uncharged molecules, particularly so if they are
large. This term is reasonably approximated with the same SASA approach that is used for cavitation, albeit with a
smaller, and negative, prefactor. In practice this is most easily achieved by simply scaling the cavitation term down
by a constant multiplicative factor. A good scaling factor for MPSM, and presumably for SSM, is 0.281705, which is
what ONETEP uses by default (see Ref. [Dziedzic2011] for justification). The keyword controlling this parameter is
is_apolar_scaling_factor (with the above default), and its argument is a unitless value. For SCCS there are two
different parameterisations described in Ref. [Andreussi2012], termed “fit g09” and “fit g03”, with the latter usually
being more accurate. The corresponding values of the apolar scaling factor are 0.034722222 and 0.159722222.
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Apolar terms: solvent sccessible volume (SAV)

The accuracy of the implicit solvent model can be further improved by adding the surface-accessible volume (SAV) to
the apolar energy term:

∆𝐺𝑎𝑝𝑜𝑙 = 𝜏𝛾𝑆 + 𝑝𝑉

where 𝛾 is the physical surface tension (Section on cavitation energy), 𝜏 is the apolar scaling factor tuned by
is_apolar_scaling_factor in the SASA model (Section on dispersion-repulsion energy), and 𝑝 is the solvent pres-
sure. This method is activated by setting is_apolar_method to ’SAV’. We note that the scaling factors 𝜏 , 𝑝, and (in
the case of soft sphere) 𝑓 , must be tuned to give accurate free energies of solvation compared to the original SASA
model. By minimising the mean absolute error (MAE) of ∆𝐺𝑠𝑜𝑙𝑣 with respect to experiment for a small set of neutral
molecules, we found the optimum scaling factors for water (𝛾 = 0.07415 𝑁𝑚−1) are:

• Soft Sphere: 𝑓 = 1.20, 𝜏 = 0.813 and 𝑝 = −0.35 𝐺𝑃𝑎

• MPSM: 𝜌0=0.00035, 𝜏 = 0.684 and 𝑝 = −0.35 𝐺𝑃𝑎

Currently, these values are only fully optimised for the soft sphere implicit solvent model, but the values provided for
the MPSM provide a starting estimate. We note that in this simple model, 𝑝 does not correspond to the physical pressure
of the solvent and acts as a fitting parameter to give optimum values of ∆𝐺𝑠𝑜𝑙𝑣, meaning it can assume negative values.

Furthermore, if fixed PAOs are used in place of optimised NGWFs, the optimum parameters change significantly. For
the QZP basis, best parameters for the soft sphere model and MPSM are:

• Soft Sphere: 𝑓 = 1.21, 𝜏 = 0.861 and 𝑝 = −0.35 𝐺𝑃𝑎

• MPSM: 𝜌0 = 0.00035, 𝜏 = 0.785 and 𝑝 = −0.35 𝐺𝑃𝑎

Larger or smaller fixed PAO basis sets may require slightly different optimal parameters given the above values were
calculated with the QZP basis only.

In summary:

• polar, cavitation, dispersion and repulstion terms (SASA):
is_include_apolar T (default)
is_apolar_method SASA (default)
is_apolar_scaling_factor 0.281705 (default)

• polar, cavitation, dispersion and repulstion terms (SAV):
is_include_apolar T (default)
is_apolar_method SAV

is_soft_sphere_scale 1.20 (optimised for soft sphere)
is_apolar_scaling_factor 0.813 (optimised for soft sphere)
is_solvent_pressure -0.35 GPa (optimised for soft sphere)

• polar and cavitation terms only:
is_include_apolar T (default)
is_apolar_scaling_factor 1.0

• polar term only:
is_include_apolar F

3.10.3 Practicalities
DL_MG solver

ONETEP uses a multigrid solver to solve the Poisson or Poisson-Boltzmann equation. Currently this is done by inter-
facing to a solver called DL_MG [Anton2020], [Womack_2018]. DL_MG is distributed with ONETEP and is compiled
in by default. If your version does not include DL_MG your calculation will stop with a descriptive error message.
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Solving the P(B)E is a memory- and time-consuming process, and you should expect solvation calculations to take about
2-3 times longer compared to standard ONETEP (also remembering that you will likely have to run two calculations per
result – one in vacuum, and one in solvent). The memory requirement of the solver grows linearly with the volume of
the system, meaning that padding with vacuum or with bulk solvent is not free, in contrast to calculations not employing
the multigrid solver.

The solver uses a multigrid approach to solve the P(B)E to second order. To ensure the high-order accuracy necessary
for solvation calculations, the solver then applies a high-order defect correction technique, which iteratively corrects the
initial solution to a higher order. Consult Ref. [Dziedzic2013] for more information on the defect correction approach
used in DL_MG.

Grid sizes

Under OBC

One limitation of DL_MG is that the grid sizes it uses are not created equal. Good grid sizes are divisible many times
into grids twice as small. For example a grid with 161 points (and so 160 grid-edges in between them) is an excellent
choice, since it divides into two grids with 81 points (160 splits into two 80’s), these divide into two grids with 41
points, which in turn divide into two grids with 21 points, which divide into two grids with 11 points and so on. This
lets the solver use many multigrid levels, increasing efficiency. For contrast, consider a grid with 174 points (and so
173 grid-edges). 173 is prime, and this grid cannot be subdivided at all, making it a poor choice.

Knowing about these limitations, ONETEP will sometimes slightly reduce (truncate) your fine grid dimensions when
passing data to and from the multigrid solver. This truncation always affects the right-hand side of the grid, and by
default between 1 and 7 grid lengths will be truncated, to give DL_MG enough flexibility. This is done automatically,
and you will be informed about the details like this:

ONETEP fine grid is 126 x 126 x 126 gridpoints, 29.0000 x 29.0000 x 29.0000 bohr.
FD multigrid is 121 x 121 x 121 gridpoints, 27.8492 x 27.8492 x 27.8492 bohr.

Here, ONETEP discarded three slabs, each just over 1 𝑎0 thick, from your system, at the highest values of 𝑥, 𝑦, and 𝑧.

Even though this is done automatically, it is your responsibility to ensure that nothing of significance (read: any charge
density) is in the margin that is thrown away. If any of your NGWFs extend into the margin, your calculation will be
meaningless (and will likely stop with an error). Due to Fourier ringing, tails of very small, but nonzero charge density
extend in all Cartesian directions from your system, even outside the localisation spheres of the NGWFs. It is thus good
practice to pad your system with a little vacuum in all directions, say 10 𝑎0. This is in addition to the margin lost due
to truncation.

Under PBC

Under PBC, the grid used by the multigrid solver must have the same dimensions as the simulation cell. This is
necessary to ensure that the solution from the solver has the correct periodicity. The approach of truncating the grid
(Section on grid sizes under OBC) to obtain a grid which satisfies the grid size constraints of the multigrid solver cannot
therefore be used in periodic BCs. Instead, an appropriately sized grid for use by the multigrid solver is obtained by
scaling ONETEP’s fine grid, changing the number and spacing of grid points, while maintaining the same physical
dimensions. This corresponds to slightly increasing the scale factor for the fine grid (used, among other things, for
multigrid operations) with respect to the standard grid (determined by the kinetic energy cutoff) along each coordinate
direction to ensure that the dimensions of the fine grid satisfy the requirements of the solver (see Ref. [Anton2020] for
details about these requirements).

This is done automatically, and you will be informed about the details like this:

Grid scale modified to satisfy multigrid solver grid constraints
Grid scale values after modifification: 2.09 2.09 2.00

********************************************************************************
(continues on next page)
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(continued from previous page)

[...]
ONETEP fine grid is 136 x 136 x 240 gridpoints, 32.4219 x 32.7579 x 60.0000 bohr.
FD multigrid is 136 x 136 x 240 gridpoints, 32.4219 x 32.7579 x 60.0000 bohr.

Here, the grid was scaled by a factor of 2.09 along the 𝑥 and 𝑦 coordinates, and no scaling was necessary for the 𝑧
coordinate. The two grids (ONETEP fine grid and the grid seen by DL_MG) are identical.

Changing the fine grid scale factor causes ONETEP to use the modified fine grid throughout the calculation (not only
when invoking the multigrid solver). This has the unfortunate consequence that ONETEP must perform additional
work to interpolate and filter between the fine grid and a slightly smaller “double grid”, which is used during other
parts of a ONETEP calculation. Normally this is avoided by making the fine and double grids the same size, but is no
longer possible when the fine grid is modified for multigrid operations in PBCs.

Auto solvation

An in-solvent calculation is almost universally preceded by a calculation in vacuum. In the fixed cavity mode this is
necessary to generate the cavity from a converged in-vacuum calculation. In the self-consistently updated cavity mode
this helps mitigate stability issues associated with the cavity updates (cf. Section on self-consistently updated cavity).
To make the procedure easier for users, ONETEP provides what is known as “auto solvation” – a mode of operation,
where the two calculations (in vacuum and in solvent) are automatically run in sequence.

To enable auto solvation (which is off by default), use is_auto_solvation T. This will automatically run an
in-vacuum calculation, followed by a calculation in solvent. Some input parameters might have to be adjusted along
the way, but this will happen automatically and you will always be informed when this happens. Once the calculation
in solvent completes, a detailed breakdown of the energies will be printed. It will look something like this:

Individual components of total energy in solvent: hartree kcal/mol
- Usual non-electrostatic DFT terms: -26.28930636174560 -16496.788451
- Electrostatic fixed charge energy: 3.05443104938460 1916.684380
- Apolar cavitation energy: 0.02080496905999 13.055315
- Apolar dispersion-repulsion energy: -0.01495721238146 -9.385792
-------------------------------------------------------------------------------
- Total energy in solvent: -23.22902755568246 -14576.434548

The above shows a breakdown of the total energy in solvent into the usual DFT terms (except for electrostatic energy),
the electrostatic energy, the apolar cavitation energy and the apolar dispersion-repulsion energy.

Components of total energy in solvent: hartree kcal/mol
- Usual non-electrostatic DFT terms: -26.28930636174560 -16496.788451
- Electrostatic energy: 3.05443104938460 1916.684380
- Apolar energy terms: 0.00584775667854 3.669523
-------------------------------------------------------------------------------
- Total energy in solvent: -23.22902755568246 -14576.434548

In the above all the apolar terms have been summed together for convenience.
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Calculation of free energy of solvation: hartree kcal/mol
- Total energy in solvent: (+) -23.22902755568246 -14576.434548
- Total energy in vacuum: (-) -23.20990671966879 -14564.436043
-------------------------------------------------------------------------------
- Total free energy of solvation: -0.01912083601367 -11.998505

The above is a direct calculation of the free energy of solvation as a difference of the in-solvent and in-vacuum
energies.

Components of polar term in f.e. of solvation: hartree kcal/mol
- Electrostatic: -0.06759943752720 -42.419287
- Change in nonelectrostatic DFT terms: 0.04263084483500 26.751258
-------------------------------------------------------------------------------
- Polar term in f.e. of solvation: -0.02496859269221 -15.668028

The above is the calculation of the polar term to solvation, as a sum of the change in electrostatic energy between
in-solvent and in-vacuum and the change in the remaining DFT terms.

Components of free energy of solvation: hartree kcal/mol
- Polar term in f.e. of solvation: (+) -0.02496859269221 -15.668028
- Apolar (cavitation, dis., rep.): (+) 0.00584775667854 3.669523
-------------------------------------------------------------------------------
- Total free energy of solvation: -0.01912083601367 -11.998505

Finally, the total free energy of solvation is calculated as the sum of the polar and apolar terms calculated earlier. This
is usually what you are after.

Auto solvation relies on restart files to achieve a seamless transition from the calculation in vacuum to the calculation in
solvent. A .vacuum_dkn and a .vacuum_tightbox_ngwfs file will be written to disk once the calculation in vacuum
is completed (and also earlier, if you used write_denskern T and/or write_tightbox_ngwfs T). These files are
then read at the beginning of the calculation in solvent. This makes restarting in-solvent geometry optimisation and
molecular dynamics runs very tricky – this is not recommended in practice. Please ensure such calculations run to
completion without manual restarts.

Manual solvation and restarts

Occasionally you might want to run a calculation in solvent without automatically running a calculation in vacuum
first. Perhaps you already have the calculation in vacuum and you prefer to manually restart it in solvent. This is
known as “manual solvation”. To activate it, use is_implicit_solvent T (the default is F), and make sure to have
is_auto_solvation F (which is the default).

Make sure you know how the solute cavity is generated in this case. If this is a fresh calculation (not a restart), the cavity
will be generated from the initial guess density. This is probably not what you want. In the fixed cavity mode, this
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will mean that you will be stuck with a cavity that is not very realistic (coming from a guess). In the self-consistently
updated cavity mode, the cavity will adapt to the subsequent changes to the density, but the initial, dramatic changes
might make this numerically unstable. Therefore, restarting from a converged in-vacuum run is recommended instead.

If you ran an in-vacuum calculation to convergence earlier and you have the requisite restart files, you can add
read_denskern T and read_tightbox_ngwfs T to your input to effect a restart. ONETEP will look for a .dkn
and a .tightbox_ngwfs file. The cavity will be constructed from the density generated from these files, and the
calculation will also proceed from this DKN and NGWFs. If the in-vacuum calculation you ran earlier was a part of an
auto-solvation calculation, you will need to rename or link the .vacuum_dkn and .vacuum_tightbox_ngwfs files to
their .dkn and .tightbox_ngwfs counterparts.

If you need to restart an auto-solvation calculation which stopped in the middle of the in-vacuum calculation, you can
set the is_restart_vac_from_vac to T. This allows you to restart the in-vacuum calculation from the .vacuum_dkn
and .vacuum_tightbox_ngwfs files.

Finally, if you want to restart an in-solvent calculation from an unfinished in-solvent calculation, you have to be care-
ful. This is because you want the calculation to continue from the partially-converged in-solvent density, while still
constructing the cavity from the converged in-vacuum density. To do this, use the is_separate_restart_files
keyword. Setting it to T (the default is F) will instruct ONETEP to construct the solute cavity from the .vacuum_dkn
and .vacuum_tightbox_ngwfs files, while the density for continuing the calculation will be generated from the .dkn
and .tightbox_ngwfs files.

Solvation in PBC

Implicit solvation operates under OBC by default. However, ONETEP allows solvation calculations in PBC, with some
caveats. Only fully periodic BCs are supported, i.e. where the system is periodic along all simulation cell directions.
Support for mixed BCs (where OBC are applied along some directions and PBC along others) is planned for the future,
but is not currently supported. If you intend to solvate slabs, surfaces or wires, you would probably be best off using
PBC and suitable padding.

Boundary conditions can be specified individually for the multigrid solver, local pseudopotential, ion-ion interaction
and the smeared ion representation using the following keywords:

• multigrid_bc,

• pspot_bc,

• ion_ion_bc,

• smeared_ion_bc.

Each of these keywords accepts a string which should contain three characters (which may be separated by spaces),
specifying the BCs along the 𝑥, 𝑦 and 𝑧 directions of the simulation cell. For multigrid_bc the characters may be
O, P or Z, corresponding to open (Coulombic), periodic and zero BCs, respectively. “Zero” BCs are open BCs, but
with the potential set to zero at the boundary, rather than approximately computed. For pspot_bc, ion_ion_bc and
smeared_ion_bc, the values can be O or P, defined as for multigrid_bc.

These keywords allow for flexible selection of mixtures of open and periodic BCs, but currently only fully open and
fully periodic BCs are supported, corresponding to values of O O O and P P P (and Z Z Z to use zero BCs in the
multigrid solver).

Key points on using the BC keywords

• If multigrid_bc is set in an input file, but the implicit solvent model is not activated (e.g. if other solvent model
keywords are not used) then the multigrid solver is used to compute the Hartree potential in vacuum, without the
smeared ion representation.

• Setting smeared_ion_bc is insufficient to activate the smeared ion representation—you must also set
is_smeared_ion_rep (or use the full solvent model, e.g. via is_implicit_solvent).
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• If BCs are not explicitly set using multigrid_bc and the multigrid solver is activated (for example, by setting
is_implicit_solvent: T), then the BCs for the multigrid solver default to fully open BCs.

• If BCs are not explicitly set using pspot_bc then the BCs for the local pseudopotential are determined by the
type of calculation being performed and should respect previous defaults. Setting openbc_pspot: T will set
fully open BCs, as will setting is_implicit_solvent: T or is_smeared_ion_rep: T. In vacuum (without
smeared ions) the local pseudopotential defaults to fully periodic BCs, unless the cutoff Coulomb approach is
used, in which case the BCs are determined by the value of the coulomb_cutoff_type keyword.

• If BCs are not explicitly set using ion_ion_bc then the BCs for the ion-ion interaction are determined by the
type of calculation being performed and should respect previous defaults. Setting openbc_ion_ion: T will set
fully open BCs, as will setting is_implicit_solvent: T or is_smeared_ion_rep: T. In vacuum (without
smeared ions) the ion-ion interaction defaults to fully periodic BCs, but this can be changed (as normal) by using
the cutoff Coulomb or Martyna-Tuckerman approaches.

• If smeared_ion_bc is not explicitly set, then the BCs used for smeared ions are the same as those used for the
multigrid solver (with the exception that zero BCs for the multigrid solver are converted to open BCs for smeared
ions).

• It is possible to specify inconsistent BCs for different interaction terms. A warning should be output if this is
detected, but care is necessary to avoid unphysical results.

In short: the boundary conditions selected by default in previous versions of ONETEP should be respected if the new
keywords are not explicitly set. If the keywords are set, then care must be taken to ensure that they are set consis-
tently in order to obtain physically realistic results. An effort has been made to prevent inconsistencies between the
setting of the new keywords for controlling BCs and earlier keywords (such as openbc_hartree, openbc_pspot and
openbc_ion_ion), but this has not been extensively tested.

Smeared ions

The P(B)E is almost always solved for the molecular (total) density, because we are interested in how the solvent
polarises in response to the total (valence electronic + core) charge density. The solution is the molecular potential, and
not the electronic potential. To reconcile this with the usual DFT way of thinking in terms of valence-electronic and
core densities and potentials separately (which is needed e.g. in the calculation of the NGWF gradient), a numerical
trick known as the smeared-ion formalism is used. In this formalism ionic cores are modelled by narrow positive
Gaussian distributions and the usual energy terms are re-cast (cf. Ref. [Dziedzic2013], Appendix):

• the usual Hartree energy is now replaced by the “molecular Hartree energy” (also called electrostatic energy),
that is, the electrostatic energy of the molecule’s total charge distribution in the potential this charge distribution
generates, in the presence of dielectric;

• the local pseudopotential energy is corrected by an extra term that takes the smeared-ion nature of the cores into
account;

• a self-interaction correction term is added to the total energy to account for the added Gaussian distributions
(each of them self-interacts). This term does not depend on the electronic degrees of freedom, but depends on
the ionic positions;

• a non-self-interaction correction term is added to the total energy to account for the added Gaussian distributions
(they interact with each other). This term does not depend on the electronic degrees of freedom, but depends on
the ionic positions.

In principle, the total energy of the system is unchanged by the application of the smeared-ion formalism, however,
due to minor numerical inaccuracies some discrepancies may be observed. These cancel out when calculating energy
differences between solvated and in vacuo systems, provided the smeared-ion formalism is used for the vacuum
calculation as well. There is one parameter to the smeared-ion formalism, 𝜎, which controls the width of the Gaussians
placed on the ions. See Ref. [Dziedzic2013] for more details on the choice of this parameter. The default value is almost
always OK.
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The key takeaway message here is that you need to use smeared ions in both the in-vacuum calculation and the in-
solvent calculation to ensure the energy expressions are comparable. To do that, add is_smeared_ion_rep T to your
input file(s). If you forget about this in a solvation calculation (is_implicit_solvent T) or if you do auto solvation
(is_auto_solvation T) it will be added automatically for you, but a warning will be produced. However, if you run
manual solvation, you need to remember to include is_smeared_ion_rep T in the in-vacuum calculation – ONETEP
has no way of knowing you will follow this with an in-solvent calculation.

Forces

If you ask ONETEP to calculate forces, the force terms due to implicit solvent will be automatically calculated and
included. The formulas employed are exact (to numerical accuracy) when a self-consistently updated cavity is used. In
practice there will be some noise due to incomplete SCF convergence, but this is at a level comparable with standard
ONETEP calculations in vacuum (say, ~0.1%). This is because the Hellmann-Feynman theorem holds only approxi-
mately due to the calculation being very close to the energy minimum, but not exactly there. Non-SCF forces help, but
they too are approximate.

For the case of a fixed cavity, the solvation forces are approximate. The approximation is very good, but initial tests
suggest that you might not be able to converge geometries to typical thresholds – although the noise in the forces will
be small, it might be enough close to equilibrium to throw off the geometry optimiser. Keep this in mind. You should
expect about 1-2% error in the force.

You should be able to do geometry optimisation and molecular dynamics without any problems with implicit solvent,
provided that you use is_auto_solvation T (not needed, of course, for the soft-sphere model). Note that restarting
these might be tricky if they are interrupted during the in-solvent stage – you will need to ensure the correct restart
files (the vacuum restart files) are used to generate the solvent cavity upon restart, cf. Section on manual solvation and
restarts.

Smeared-ion forces in vacuum are also implemented. These are numerically exact and practically negligible.

Solvation forces work both in OBC and in PBC.

Exclusion regions

This functionality enables excluding regions of space from the solvent. Any excluded region has its dielectric per-
mittivity set to exactly 1, similarly to what happens in core regions (cf. is_core_width). This is useful for removing
pockets of solvent that could otherwise appear in buried cavities, which are inaccessible to the solvent, yet the electronic
density there is low enough to generate a dielectric with a permittivity notably larger than 1.

The regions are specified in a %block is_dielectric_exclusions, which looks like this:

%block is_dielectric_exclusions
sphere 20.0 22.0 18.0 4.0 ! x, y, z of centre; r (all in a0)
box 13.0 16.0 20.5 29.0 13.0 15.0 ! xmin xmax ymin ymax zmin zmax (all in a0)
xcyl 18.4 20.7 7.0 ! y, z, r (all in a0)
%endblock is_dielectric_exclusions

The above excludes the solvent from a sphere centred at (20, 22, 18) 𝑎0 with a radius of 4 𝑎0, from a box spanning
from (13, 20.5, 13) 𝑎0 to (16, 29, 15) 𝑎0, and from a cylinder oriented along the X axis, passing through 𝑦 = 18.4 𝑎0,
𝑧 = 20.7 𝑎0 and a radius of 7 𝑎0. sphere, box, xcyl, ycyl and zcyl are the only region shapes supported now. All
exclusion regions currently assume open boundary conditions and do not work in PBC. You can have as many as
10000 regions specified in the exclusion block.

It is crucial to ensure that discontinuities in the permittivity are avoided, because they prevent the solver from converg-
ing. Usually, exclusion regions can be chosen such that they merge quite smoothly with regions where the dielectric is
naturally 1 (or reasonably close). If this is not possible, then the boundaries of the exclusion regions can be smoothed.
This is achieved using a Fermi-Dirac function,

𝜀(𝑑) = 𝜀∞ − 𝜀∞ − 1

𝑒𝑑/𝑑0 + 1
,
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where 𝑑 is the distance to the exclusion region boundary (and is negative if inside the exclusion region), and 𝑑0 is
the smearing length set by is_dielectric_exclusions_smear. By default, this is set to 0 𝑎0, giving hard-walled
exclusion regions (𝜀 = 1 inside and 𝜀 = 𝜀∞ outside). But if exclusion regions interface directly with solvent regions,
it should be chosen to be at least a couple of times larger than the multigrid spacing, so that the permittivity becomes
sufficiently continuous for the solver to converge.

Solvent Polarization

The non-homogeneous Poisson equation:

∇ · (𝜀∇𝑣) = −4𝜋𝑛tot

can be recast in the form of a solvent polarization density:

∇ · ∇𝑣 = −4𝜋 (𝑛tot + 𝑛pol)

Subtracting the two, the polarization density is calculated as [Andreussi2012]:

𝑛pol =
1

4𝜋
∇ · [(𝜀− 1)∇𝑣]

𝑛pol =
1

4𝜋

[︀
(𝜀− 1)∇2𝑣 + ∇ (𝜀− 1) · ∇𝑣

]︀
The polarization potential is calculated by solving the following Poisson eq:

∇ · ∇𝑣pol = −4𝜋𝑛pol

This is done in properties calculation with is_solvation_properties T and 3-D grid data for 𝑛pol and 𝑣pol is
output.

3.10.4 Keywords used in solvation calculations
Basic

• is_implicit_solvent T/F turns on/off the implicit solvent. Default is off. Will be set automatically if auto
solvation is used.

• is_include_apolar T/F turns on/off the apolar energy terms. Default is on.

• is_apolar_sasa_definition density/isodensity defines the method used in the difference method
which calculates the solvent accessible surface area (SASA) of the dielectric cavity. density calculates the
SASA by varying the electron density, and isodensity uses varying 𝜌0 values. density is the recommended
setting unless backwards compatibility with old versions is desired. Warning can be suppressed by defining this
keyword. Default is density, but you will get a warning if it is not specified. Specify density or isodensity
explicitly to suppress warnings. Only affects MPSM and SCCS. For SCCS density is the only available option.

• is_apolar_method SASA/SAV sets the definition of the cavitation term in terms of surface area or surface area
with volume. Default is SASA.

• is_apolar_scaling_factor x controls the scaling of the apolar term with the aim of taking solute-solvent
dispersion-repulsion into account. The default is 0.281075, which is good for MPSM, but not necessarily SCCS
or SSM.

• is_smeared_ion_rep T/F turns on/off the smeared-ion representation. Default is off, but if ONETEP detects
you’re running a solvation calculation, it will turn it on for you and let you off with a warning. When comparing
results of two calculations (e.g. results in vacuum and in solvent), always ensure this is set identically in both
calculations.

• is_density_threshold x sets the MPSM model parameter 𝜌0 to 𝑥 (atomic units). The default is 0.00035, as
per Ref. [Dziedzic2011].
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• is_solvation_beta x sets the MPSM model parameter 𝛽 to 𝑥 (no unit). The default is 1.3, as per Ref.
[Dziedzic2011].

• is_bulk_permittivity x sets the physical constant – solvent bulk permittivity 𝜖∞ to 𝑥 (no unit). The default
is 78.54 (suitable for water near room temperature and pressure and at low frequencies) if implicit solvent is on,
and 1.0 is implicit solvent is off.

• is_solvent_surf_tension x sets the physical constant – solvent surface tension 𝛾 to 𝑥 (unit must be sup-
plied). The default is 0.07415 N/m (which is suitable for water near room temperature).

• is_solvent_pressure x sets the pressure used to calculate the SAV contribution to the apolar term. Does
not correspond to physical water pressure and is optimised to obtain minimal errors with respect to experimental
free energies of solvation. Default is -0.35 GPa (which is suitable for water near room temperature).

• is_dielectric_model FIX_INITIAL/SELF_CONSISTENT picks either the fixed cavity or the self-
consistently updated cavity, as described in the section on the solute cavity.

• is_auto_solvation x automatically runs an in-vacuum calculation before any solvation calculation, thus re-
lieving the user from the burden of manually restarting calculations. This attempts to automatically control the
directives for restarting, running two calculations (vacuum and solvated) in succession. Using this directive is a
must when doing implicit-solvent geometry optimisation, implicit-solvent molecular dynamics, implicit-solvent
transition state search or implicit-solvent forcetest. This directive is compatible with conduction calculations.

• is_dielectric_function FGF/SOFT_SPHERE/ANDREUSSI Defines the function used to create dielectric
cavity. Switches between the charge density based MPSM (FGF), the atomic radius-based soft sphere model
(SOFT_SPHERE) and SCCS (ANDREUSSI).

• is_density_min_threshold x Only applies to SCCS. Sets the parameter 𝜌min. The default is 0.0001, which
corresponds to the “g03” fit in Ref. [Andreussi2012].

• is_density_max_threshold x Only applies to SCCS. Sets the parameter 𝜌max. The default is 0.0050, which
corresponds to the “g03” fit in Ref. [Andreussi2012].

• is_soft_sphere_scale x Only applies to SSM. Scales the default Alvarez vdW radii provided in ONETEP.
The default is 1.33. This does not apply to radii defined in the is_soft_sphere_radii block.

• is_soft_sphere_delta x Only applies to SSM. Controls the steepness of the transition from vacuum to the
bulk permitivity value. This applies to both default radii and those specified in the is_soft_sphere_radii
block. The default is 0.5.

• is_soft_sphere_radii Only applies to SSM. Block sets the soft sphere radii for species defined. These
values are unaffected by the scaling factor defined in is_soft_sphere_scale. Undefined species will use the
default values defined by Alvarez vdW (Ref. [Alvarez2013]). Units bohr. e.g.
%block is_soft_sphere_radii

Li 2.5

Pt 4.6

%endblock is_soft_sphere_radii

Advanced

The default settings usually work fine and the advanced settings should only be changed if you know what you’re doing.

• is_bc_coarseness x changes the size of the blocks into which charge is coarsened when boundary conditions
are calculated. The default is 5. Smaller values may subtly increase accuracy, but will incur a computational cost
that grows as 𝑥−3. This can be perfectly acceptable for smaller molecules. For larger molecules (1000 atoms
and more) use 7 or more to reduce computational cost. For the effect of this parameter on accuracy, cf. Ref.
[Dziedzic2013].

• is_bc_surface_coarseness x changes the size of the surface blocks onto which charge is interpolated when
boundary conditions are calculated. The default is 1 and is recommended. Larger values will improve computa-
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tional cost (that grows as 𝑥−2), but may decrease accuracy, especially for charged molecules. If the calculation
of BCs becomes a bottleneck, prefer tweaking is_bc_coarseness x instead.

• is_bc_allow_frac_charge T/F (new in v6.1.1.28) when set to T, the calculation of boundary conditions for
the multigrid solver will not check if the coarse-grained charge is close to an integer. This can be used in rare
cases where you know this is not going to be a problem. The default is F.

• is_separate_restart_files T/F allows the set of restart files used to construct the solute cavity in solvent
to be distinct from the set of restart files used to construct the initial density. This is useful if you need to restart
a solvated calculation, but still want to construct the cavity from the converged vacuum density, and not the
partially-converged solvated density. See section on manual solvation and restarts.

• is_restart_vac_from_vac T/F allows the in-vacuum calculation as part of an auto-solvation calculation
to be restarted from .vacuum_dkn and .vacuum_tightbox_ngwfs files, rather than the usual .dkn and .
tightbox_ngwfs files. See section on manual solvation and restarts.

• is_solvation_properties T/F when set to T it will produce scalarfields of quantities relevant in solvation
during a properties calculation. This is useful for visualising potentials, densities, Boltzmann ion concentrations,
electrolyte accessibilities, etc. Ensure you supplied dx_format T and/or cube_format T and/or grd_format
T.

• is_smeared_ion_width x sets the width of the smeared-ion Gaussians, 𝜎, to 𝑥 (in units you supply). The
default is 0.8 𝑎0 and should be OK for most calculations. Results should not depend on this parameter, but
only if it’s within rather narrow limits of sensibility. Too high values (anything larger than 1.0, roughly) are
seriously unphysical, as they will lead to cores whose Gaussian tails stick out of the electronic density, especially
for hydrogen atoms. This is very bad, since it does not change the energy in vacuo (the effect of the smearing,
regardless of 𝜎, is cancelled by the correction terms to energy), but changes the energy in solution (by polarising
the solvent differently in reality the cores are screened by the electrons). Too low values (anything smaller than
0.6, roughly), on the other hand, will lead to Gaussians so thin and tall that they will become very difficult for
the multigrid solver to treat, requiring high orders and unreasonably fine grids to obtain multigrid convergence.
See Ref. [Dziedzic2013] for more details.

• fine_grid_scale x makes the ONETEP fine grid 𝑥 (no unit) times as fine as the coarse grid, 𝑥 does not have
to be an integer. The solution of the P(B)E and associated finite-difference operations are performed on the fine
grid (or its subset, for OBC). Increasing fine_grid_scale allows making this grid finer without unnecessarily
increasing the kinetic energy cutoff of the calculation. The default is 2. Memory and computational effort
increase with the cube of 𝑥.

• is_dielectric_exclusions_smear x sets the smearing for dielectric exclusion regions to 𝑥 (in the units you
supply). See section on exclusion regions.

• is_emft_cavity T/F if EMFT is enabled at the same time as implicit solvent, this controls whether the solvent
cavity is determined using the standard density kernel (at the lower level of theory), or the EMFT kernel. The
default is F. See EMFT documentation for more details.

Fine control over DL_MG

These keywords enable fine control over the behaviour of the DL_MG solver. See Ref. [Anton2020] for more details,
particularly regarding convergence control.

• mg_use_cg T/F (new in v6.3.1.6) Turns on the conjugate gradient solver. This generally increases the stability of
the solver, but is likely to reduce performance. It might be useful to turn this on if you have problems converging
difficult cases – particularly in Poisson-Boltzmann solvation.

• mg_use_error_damping T/F can be used to turn on/off error damping in the defect correction procedure. This
is often necessary when solving the full (non-linearised) Poisson-Boltzmann equation, but will likely not do much
for the linearised Poisson-Boltzmann equation or for the Poisson equation. Accordingly, the default depends on
is_pbe and is F for is_pbe NONE and is_pbe LINEARISED, and T for is_pbe FULL.

74 Chapter 3. Ground State Calculation Setup



ONETEP Documentation, Release 7.1.8

• mg_continue_on_error T/F if T, instructs the multigrid solver not to abort if a solution to the P(B)E cannot
be converged to desired tolerances, and instead to return an underconverged solution. This can be useful for
particularly stubborn cases, especially in Boltzmann solvation. Default is F when solving the Poisson equation
and T if solving the Poisson-Boltzmann equation. If you want to turn it on for Boltzmann solvation, you will very
likely need to increase is_pbe_energy_tolerance by a very large amount.

• mg_defco_fd_order x sets the discretization order used when solving the P(B)E to 𝑥 (no unit). Available
values are 2, 4, 6, 8, 10 and 12, the default is 8. With 2 no defect correction is performed. Values of 4 and
above employ defect correction. The lowest values (2 and 4) are not recommended, because they offer poor
accuracy. Generally the largest value (12) will offer best accuracy, but this has to be weighed against a likely
drop in performance (higher orders often take longer) and possibility of Gibbs-like phenomena that may occur
when high orders are used with steeply-changing dielectric permittivity, as is the case for larger values of 𝛽. 8
or 10 is a good starting value. Results should not depend on the choice of this parameter, but performance and
multigrid convergence will. See the troubleshooting section below for details. See Ref. [Dziedzic2013] for more
details.

• mg_max_iters_vcycle x sets the maximum number of multigrid V-cycle iterations to 𝑥 (no unit). The default
is 200. See Ref. [Womack2018] for a description of the solver, including the V-cycle scheme employed.

• mg_max_iters_defco x sets the maximum number of high-order defect correction iterations to𝑥 (no unit). The
default is 30. See Ref. [Womack2018] for a description of the solver, including the defect correction procedure.

• mg_max_iters_newton x sets the maximum number of Newton method iterations to 𝑥 (no unit). The default
is 30. This is only relevant when solving the non-linear PBE. See Ref. [Womack2018] for a description of the
inexact-Newton method employed by the solver in this scenario.

• mg_max_iters_cg x (new in v6.3.1.6) sets the maximum number of iterations for conjugate gradients to 𝑥 (no
unit). The default is 50. This is only relevant when mg_use_cg is T.

• mg_max_res_ratio x sets the threshold for the consecutive residual ratio which determines when the multigrid
solver gives up (positive real value, no unit, the default is 0.999). This should not require tuning.

• mg_vcyc_smoother_iter_pre x sets the number of V-cycle smoother iterations pre-smoothing (integer, no
unit, the default is 2). Difficult systems, particularly in PBCs, might benefit from an increase of this value to 4
or 8.

• mg_vcyc_smoother_iter_post x sets the number of V-cycle smoother iterations post-smoothing (integer, no
unit, the default is 1). Difficult systems, particularly in PBCs, might benefit from an increase of this value to 4
or 8.

• mg_tol_res_rel 𝑥 Set the relative tolerance in the norm of the residual for the defect correction procedure to
𝑥 (no units, the default is 1.0e-2).

• mg_tol_res_abs 𝑥 Set the absolute tolerance in the norm of the residual for the defect correction procedure to
𝑥 (atomic units, the default is 5.0e-2).

• mg_tol_pot_rel 𝑥 Set the relative tolerance in the norm of the potential for the defect correction procedure to
𝑥 (no units, the default is 1.0e-6).

• mg_tol_pot_abs 𝑥 Set the absolute tolerance in the norm of the potential for the defect correction procedure
to 𝑥 (atomic units, the default is 1.0e-6).

• mg_tol_vcyc_rel 𝑥 Set the relative tolerance for the norm of the residual in multigrid V-cycle iterations to 𝑥
(no units, the default is 1.0e-8).

• mg_tol_vcyc_abs 𝑥 Set the absolute tolerance for the norm of the residual in multigrid V-cycle iterations to 𝑥
(atomic units, the default is 1.0e-5).

• mg_tol_newton_rel 𝑥 Set the relative tolerance for the norm of the residual in Newton method iterations to 𝑥
(only applies when solving the nonlinear PBE, no units, the default is 1.0e-8).
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• mg_tol_newton_abs 𝑥 Set the absolute tolerance for the norm of the residual in Newton method iterations to
𝑥 (only applies when solving the nonlinear PBE, atomic units, the default is 1.0e-5).

• mg_tol_cg_res_rel 𝑥 (new in v6.3.1.6) Set the relative tolerance in the norm of the residual for the conjugate
gradients to 𝑥 (no units, the default is 1.0e-2). This is only relevant when mg_use_cg is T.

• mg_tol_cg_res_abs 𝑥 (new in v6.3.1.6) Set the absolute tolerance in the norm of the residual for the conjugate
gradients to 𝑥 (atomic units, the default is 5.0e-2). This is only relevant when mg_use_cg is T.

Expert

These will only be listed here and not discussed. The last three keywords are discussed in a separate document devoted
to the real space local pseudopotential (see ONETEP website).

• mg_granularity_power,

• is_surface_thickness,

• is_bc_threshold,

• is_core_width,

• is_check_solv_energy_grad,

• openbc_pspot_finetune_nptsx,

• openbc_pspot_finetune_f,

• openbc_pspot_finetune_alpha.

3.10.5 Boltzmann solvation (solute with electrolyte)
ONETEP has the ability to perform Poisson-Boltzmann implicit solvent calculations, that is, to include electrolyte
in the implicit solvent. The electrolyte is represented by point particles (“Boltzmann ions”), which interact with one
another only in the mean-field sense, and affect the reaction field, providing a rudimentary model of screening. The
model is described in Ref. [Dziedzic2020] and Ref. [Bhandari2020]. Users would be well-advised to read these first.

Boltzmann solvation calculations in ONETEP can be performed in OBC and in PBC alike. In PBC care must be taken
to suitably neutralise the simulation cell so that the electrostatic energy does not diverge. ONETEP offers a number of
schemes to achieve this, including a novel NECS scheme – see is_pbe_neutralisation_scheme in the section on
keywords controlling Boltzmann solvation and carefully read Ref. [Bhandari2020].

The inclusion of the electrolyte leads to the well-known nonlinear Poisson-Boltzmann equation. ONETEP (or rather
DL_MG) can solve this equation as is, or the linearised approximation can be used – see is_pbe in the section on
Boltzmann solvation keywords.

Because Boltzmann ions are point particles, they tend to concentrate in the immediate vicinity of the solute, often
reaching unphysical concentrations. A number of ways have been proposed to address this problem. ONETEP imple-
ments a steric potential approach to keep the Boltzmann ions sufficiently far from the solute – see Ref. [Dziedzic2020]
and is_steric_pot_type in the section on Boltzmann solvation keywords for a description.

In the presence of the electrolyte a number of additional terms appear in the grand potential. These are clearly listed
in the output if auto solvation is used:

Individual components of total energy in solvent: hartree kcal/mol
- Usual non-electrostatic DFT terms: -26.31256445391999 -16511.383124
- Electrostatic fixed charge energy: 3.11407548141888 1954.111825
- Electrostatic mobile charge energy: -0.00000610048106 -0.003828
- Accessibility (steric) correction: 0.00000440501188 0.002764
- Osmotic pressure contribution: -0.00045050433991 -0.282696
- Ionic atmosph. rearrangement entropy: -0.00082199171218 -0.515808

(continues on next page)
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(continued from previous page)

- Chemical potential contribution: 0.00082978766243 0.520700
- Apolar cavitation energy: 0.02130850899275 13.371291
- Apolar dispersion-repulsion energy: -0.01531921982762 -9.612955
-------------------------------------------------------------------------------
- Total energy in solvent: -23.19294408719482 -14553.791830

Similarly, the calculation of the free energy of solvation will include additional terms due to the electrolyte:

Components of free energy of solvation: hartree kcal/mol
- Polar term in f.e. of solvation: (+) -0.04757925126662 -29.856430
- Apolar (cavitation, dis., rep.): (+) 0.00598928916514 3.758336
- Non-es. electrolyte terms: (+) -0.00044440385885 -0.278868
- Energy of pure electrolyte: (-) -0.00048258128208 -0.302824
-------------------------------------------------------------------------------
- Total free energy of solvation: -0.04154568419718 -26.070310

If you chose not to use auto solvation, you will have to rely on the ENERGY COMPONENTS table to find the
individual terms, while the energy of pure electrolyte will be printed out for you at the end of the in-solvent
calculation.

Forces

Forces are implemented for smooth hard core steric potential, as this is the only steric potential which is well differen-
tiable. The force term due to implicit electrolyte are calculated and included by default. The formulas employed are
exact (to numerical accuracy) at self-consistency. In practice there will be some noise due to incomplete SCF conver-
gence, but this is at a level comparable with standard ONETEP calculations in vacuum (say, ~0.1%). This is because
the Hellmann-Feynman theorem holds only approximately due to the calculation being very close to the energy min-
imum, but not exactly there. Non-SCF forces help, but they too are approximate. You should be able to do geometry
optimisation and molecular dynamics without any problems with implicit electrolyte. Electrolyte forces work both
in OBC and in PBC. Tests have shown that the magnitude of these forces is quite small as compared to other force
contributions.

Keywords controlling Boltzmann solvation

The following keywords control the Poisson-Boltzmann implicit solvation functionality, which allows performing cal-
culations in implicit solvent containing electrolyte represented by Boltzmann ions.

• is_pbe NONE/LINEARISED/FULL chooses the equation to be solved in implicit solvation. NONE chooses the
(generalised) Poisson equation, which corresponds to solvation in the absence of an electrolyte. LINEARISED
chooses the linearised Poisson-Boltzmann equation (LPBE), which is a simplified treatment of electrolyte. FULL
chooses the full, non-linear Poisson-Boltzmann equation (NLPBE), which deals with the electrolyte without the
simplifications offered by linearisation. The default is NONE.

Except where noted (*), all the below keywords only have an effect if is_pbe is not NONE. Similarly, except where
noted (*), all the defaults given below only apply to calculations where is_pbe is not NONE.

• is_pbe_temperature T sets the temperature of the Boltzmann ions to T (in K). The default is 300 K.

• is_pbe_bc_debye_screening T/F includes (T) or does not include (F) the effect of Debye screening in the
calculation of Dirichlet boundary conditions for calculations in solvent. This only has an effect in OBC. With
Debye screening an additional multiplicative factor of exp (−𝑟/𝜆D), where 𝜆D is the Debye length, is included in
the boundary conditions. This is exact for LPBE and an approximation in NLPBE. Turning off Debye screening
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will cause ONETEP to use BCs that are appropriate for the case of no electrolyte, which will be unphysical. The
default is T.

• is_pbe_exp_cap c – sets the exponential cap to 𝑐 (no unit). This is only relevant to is_pbe FULL. In solving
the NLPBE it is a well-known issue that the exponential factors that appear in certain expressions (e.g. for the
Boltzmann ion concentration) are prone to exploding (in the usual floating-point representation) when the value
of the argument to the exp function is large. To retain numerical stability, the arguments to the exp function are
typically capped, i.e. they are not allowed to exceed a predefined constant. The default in ONETEP is 0.0, which
means 𝑐 is set to the default cap in DL_MG, which is currently 50.0. Specifying any value other than 0.0 will
cause ONETEP to discard the default provided by DL_MG and to use the user-specified value.

• is_pbe_neutralisation_scheme scheme chooses a specified neutralisation scheme.
(*) This keyword and its defaults can also apply to is_pbe NONE. This is only relevant for PBC calculations
with non-zero total solute charge. In this scenario the total system charge (solute + electrolyte) must be zero for
the electrostatic energy not to diverge. There are many ways of ensuring charge neutrality. ONETEP
implements the following:

– NONE ignores charge neutralisation. This is only meaningful for OBC or when the system is charge-neutral.
This is the default in OBC.

– JELLIUM applies the common jellium neutralisation, shifting the charge density by its negative average, so
that the average density is zero. This is the default for PBC with no electrolyte (is_pbe NONE).

– ACCESSIBLE_JELLIUM applies a modified jellium neutralisation (cf. Ref. [Bhandari2020], Sec. 3.3). This
is only applicable when is_pbe is not NONE.

– COUNTERIONS_AUTO applies neutralisation by electrolyte concentration shift (NECS) (cf. Ref. [Bhan-
dari2020], Sec. 3.1) with optimal shift parameters (cf. Ref. [Bhandari2020], Eqs. 14 and 15). This is the
default in PBC with electrolyte (is_pbe LINEARISED or is_pbe FULL).

– COUNTERIONS_AUTO_LINEAR applies neutralisation by electrolyte concentration shift (NECS) (cf. Ref.
[Bhandari2020], Sec. 3.1) with shift parameters derived from a linear approximation (cf. Ref. [Bhan-
dari2020], Eq. 18).

– COUNTERIONS_FIXED applies neutralisation by electrolyte concentration shift (NECS) (cf. Ref. [Bhan-
dari2020], Sec. 3.1) with shift parameters specified by the user via %block_sol_ions.

• is_pbe_energy_tolerance E sets the tolerance for the discrepancy between two expressions for the mean-
field contribution to the grand potential to 𝐸 (in units you supply). The two expressions are (A): Ref. [Bhan-
dari2020], Eq. 5, where individual terms are calculated according to Eqs. 10, 12, 13, 15, and 16 except for the
fixed electrostatic term (first term in brackets in Eq. 10), which is excluded here; and (B) Ref. [Bhandari2020],
Eq. 31 (for PBC) or Eq. 35 (for OBC) except for the fixed electrostatic term (first term in brackets in Eq. 10),
which is also excluded here. For is_pbe FULL we expect the two expressions to be identical (modulo numerical
noise). For is_pbe LINEARISED we expect the two expressions to be identical to first order (modulo numerical
noise). The check is useful for detecting poorly converged solutions of the PBE. The default is 0.01 kcal/mol
for is_pbe FULL, and 0.05 kcal/mol for is_pbe LINEARISED. Normally you should not need to adjust this
parameter. However, it might need to be increased, perhaps dramatically, if you set mg_continue_on_error
T.

• is_steric_pot_type X/H/M/S specifies the type of steric potential that will affect Boltzmann ions. This is to
prevent them from unphysically concentrating in the immediate vicinity of the solute. The available options are:

– X no steric potential. This is not recommended, except in contrived test cases. This is currently the default,
but this might change later.

– H hard-core potential (see below). The hard-core potential is infinite within the radial cutoff 𝑟c, and zero
elsewhere. Numerically this is realised by setting the accessibility to 𝛾 = 0 within the radial cutoff, and to
𝛾 = 1 elsewhere. This choice can pose numerical difficulties because of the infinite steepness, and is not
recommended.
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– M smoothed hard-core potential (see below). This is the recommended choice. Here the accessibility is
defined as 𝛾 = 1

2 + 1
2 erf ( 𝑟−𝑟c

𝜎 ), with values below 10−7 then set to 10−90. The potential, as always, is
−𝑘𝑇 ln 𝛾. Here, 𝑟c is the radial cutoff, 𝜎 is the smearing parameter.

– S soft-core potential, that is, a potential of the form 𝐴𝑟−12 erf (𝛼𝑟)
12 (see the is_sc_ keywords below).

This potential does not seem to work well (too soft) and is not recommended.

For both hard-core steric potentials the radial cutoff 𝑟c is determined as a sum of two components: the
solvent radial cutoff 𝑟solvent

c , and the solute radial cutoff 𝑟solute
c . The solvent radial cutoff is set by the

species_solvent_radius block, with one value per solute (sic!) species. The solute radial cutoff is de-
termined through is_hc_steric_dens_isovalue and also depends on the solute species (see below). The
solute cutoff is determined for each species separately, by examining the radial valence-electronic density profile
coming from the pseudoatomic solver. The radial density is scanned from infinity to zero for a value equal to
or larger than 𝑛0 (specified via is_hc_steric_dens_isovalue). The radial coordinate of this value is taken
as 𝑟solute

c . If is_hc_steric_dens_isovalue is negative, 𝑟solute
c = 0. Thus, the solute radial cutoff is constant,

and does depend on the current electronic density, only on the output of the atomic solver.

• is_hc_steric_dens_isovalue n_0 sets the density isovalue used to determine 𝑟solute
c to 𝑛0 atomic units. The

default is 0.003. This only applies to is_steric_pot_type H/M.

• is_hc_steric_smearing \sigma sets the smearing width for the smoothed hard-core cutoff
(is_steric_pot_type M) to 𝜎 (in units you supply). The default is 0.4 𝑎0.

• is_sc_steric_magnitude A sets the magnitude of the soft-core steric potential to 𝐴 (in units you supply,
dimension: energy × distance12). Default is negative, to force users not to forget this parameter. This only
applies to is_steric_pot_type S, which you should not be using anyway.

• is_sc_steric_smoothing_alpha \alpha sets the smoothing parameter of the soft-core steric potential
to 𝛼 (in units you supply, dimension: inverse distance). Default is 1.5 𝑎0

−1. This only applies to
is_steric_pot_type S, which you should not be using anyway.

• is_sc_steric_cutoff r_{\textrm{c}} sets the radial cutoff for the soft-core steric potential to 𝑟c (in units
you supply). Since the range of this potential is technically infinite, we truncate it to zero beyond a specified
distance, 𝑟c. This only applies to is_steric_pot_type S, which you should not be using anyway.

• is_steric_write T/F if set to T, the steric potential and associated accessibility will be written out as
scalarfields when initialised. Ensure you supplied dx_format T and/or cube_format T and/or grd_format
T.

• sol_ions is a block describing the Boltzmann ions in the system. The format for 𝑛Boltzmann ions is as follows:

%block sol_ions

ion_species_1 charge_1 conc_1 x_1

ion_species_2 charge_2 conc_2 x_2

...

ion_species_n charge_n conc_n x_n

%endblock sol_ions

Here, ion_species_i is the name of the species of Boltzmann ion 𝑖 (which is irrelevant from the physical
point of view), charge_i is the charge on species 𝑖, conc_i is the concentration of that species (in mol/L), and
x_i, which is optional, is a NECS shift parameter for species 𝑖, relevant only for
is_pbe_neutralisation_scheme COUNTERIONS_FIXED. For example, to define a 1M NaCl electrolyte,
you would use:

%block sol_ions

Na +1 1.0
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Cl -1 1.0

%endblock sol_ions

• species_solvent_radius defines the solvent radial cutoff 𝑟solvent
c for every solute (sic!) species, as follows:

%block species_solvent_radius

species_1 r_1

species_2 r_2

...

species_n r_n

%endblock species_solvent_radius

For example, to keep all the Boltzmann ions an extra 3.5 𝑎0 away from your methane solute, you would use:
%block species_solvent_radius

C 3.5

H 3.5

%endblock species_solvent_radius

3.10.6 Various hints for a successful start
• Use one of the examples provided on the ONETEP website as a starting point.

• Make sure both your vacuum and solvated calculations use smeared ions.

• Make sure the parameters of both your vacuum and solvated calculations are identical (box
sizes, KE cutoffs, k_zero, mg_defco_fd_order, is_smeared_ion_width, is_bc_coarseness,
is_bc_surface_coarseness). Or just use is_auto_solvation T.

• Choose FIX_INITIAL over SELF_CONSISTENT for is_dielectric_model.

• Use an mg_defco_fd_order of 8 and is_smeared_ion_width of 0.8. Specify them explicitly, as the defaults
may change in the future.

• Do not mess with expert directives.

• In OBC, have at least about 10 bohr of vacuum/solvent around the edges of your molecule’s NGWFs (not atomic
positions) on each side of the simulation cell, after taking the truncation into account – cf. section on grid sizes
under OBC.

• Always start your calculation in solution as a restart from a fully converged in vacuo calculation. Or just use
is_auto_solvation T.

3.10.7 Troubleshooting: Problems, causes and solutions
• Problem A: ONETEP crashes (e.g. catching SIGKILL or SIGSEGV) when evaluating the boundary conditions

or solving the P(B)E.
Cause (A1): You’ve run out of memory and the OOM killer killed the calculation. Solving the P(B)E often
represents the peak memory usage of the calculation.
Solution (A1): Increase available memory (perhaps by shifting the MPI/OMP balance towards more threads
and fewer MPI processes) or decrease box size or decrease grid fineness.
Cause (A2): You’ve run out of global stack space. Solving the P(B)E often represents the peak stack usage of
the calculation.
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Solution (A2): Increase stack size using ulimit -s. Make sure you do that on compute nodes, not the login
node. Or, preferably, use onetep_launcher and its -s parameter. Cause (A3): You’ve run out of per-thread
stack space. Solving the P(B)E often represents the peak per-thread stack usage of the calculation.
Solution (A3): Increase per-thread stack size using ulimit -s. Make sure you do that on compute nodes, not
the login node. Or, preferably, use onetep_launcher and its -o parameter.

• Problem B: Multigrid calculation does not converge (error message from DL_MG) or converges very slowly
(as evidenced by the contents of a log file with a filename ending in _dl_mg_log.txt).
Cause (B1): (Only applies to OBC calculations) Charge is not correctly localized (cell is too small or molecule
otherwise too close to cell edge).
Solution (B1): Check and fix the cell size, paying attention to the margin between the DL_MG grid and fine
grid.
Cause (B2): Dielectric permittivity too steeply changing on the cavity boundary for the current grid size, finite
differences struggling to approximate the changes. This is often the culprit if the calculation ran fine in vacuo
but struggles in solvent.
Solution (B2): Preferable, but painful, solution is to make the grid finer (fine_grid_scale). Otherwise an
increase or decrease of discretisation order may help (make sure it stays consistent across your calculations,
though). A parameterisation with lower is_solvation_beta and is_density_threshold will usually help
(make sure it stays consistent across your calculations, though).
Cause (B3): The smearing width is too small, making the smeared cores too thin and tall, which is difficult for
the finite differences. This is often the culprit if the calculation also struggles in vacuo.
Solution (B3): Increasing is_smeared_ion_width will help (but mind the consequences), if it was too small
in the first place. Increasing the discretisation order will help (especially if you’ve been using less than 10), but
might lead to a similar problem (Cause (B2)) in solution.
Cause (B4): Too lax thresholds for convergence of the defect correction in DL_MG.
Solution (B4): To tighten the convergence threshold of the defect correction in DL_MG, adjust the values of
mg_tol_res_rel, mg_tol_res_abs, mg_tol_pot_rel and mg_tol_pot_abs.
Cause (B5): Too few defect correction iterations in DL_MG.
Solution (B5): To increase the number of defect correction iterations in DL_MG, use mg_max_iters_defco,
try 200 for good measure.
Cause (B6): Too few smoother iterations in DL_MG, particularly if this is a Boltzmann calculation.
Solution (B6): Increase the number of smoother iterations in DL_MG to 2 or 4 using ``
mg_vcyc_smoother_iter_pre`` and mg_vcyc_smoother_iter_post.
Cause (B7): Too few V-cycle iterations in DL_MG.
Solution (B7): Increase the number of V-cycle iterations in DL_MG using mg_max_iters_vcyc, try 200 for
good measure.
Cause (B8): Too few Newton iterations in DL_MG. This only applies if you are solving the NLPBE in
Boltzmann solvation.
Solution (B8): Increase the number of Newton iterations using mg_max_iters_newton, try 100 for good
measure.
Cause (B9): Problem is too difficult for the solver – e.g. grids are not fine enough, the dielectric cavity has a
steep boundary (usually happens when underconverged densities are used to generate it), Boltzmann-ionic
concentrations changing too steeply, etc.
Solution (B9): Try using the conjugate gradient approach – add mg_use_cg T to your input file. This is only
available in versions v6.1.3.6 and newer.

• Problem C: Calculation struggles to converge LNV or NGWFs or does not converge at all. RMS gradient stalls.
Cause (C1): If you’re using is_dielectric_model SELF_CONSISTENT, then this is normal, unless your
grid is ridiculously fine (you will need psinc_spacing 0.5 and fine_grid_scale 3 or better, as a rule of
thumb).
Solution (C1): Use is_dielectric_model FIX_INITIAL if possible. If you are sure you need
is_dielectric_model SELF_CONSISTENT, make the grid finer and have a lot of memory.
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Cause (C2): Density kernel is not converged enough.
Solution (C2): Try minit_lnv 6 and maxit_lnv 6 (for smaller molecules) or minit_lnv 10 and
maxit_lnv 10 (for large molecules).

3.10.8 Frequently asked questions
What are the values for the model parameters?

Two sets of values for MPSM will be proposed here. The first one will be called high-beta parameterisation. It offers
the best quality (in terms of r.m.s. error from experiment) for both charged and neutral species. The drawback is that
the high value of 𝛽 means the multigrid convergence is poor and it often takes a while to converge. Or it may not
converge. This should be your first choice only if accuracy trumps anything else. The parameters are:

is_solvation_beta 1.6

is_density_threshold 0.00055

The second parameterisation, called low-beta should pose no problems to the multigrid solver under any circumstances.
Quality should be only marginally worse for anions and neutrals and comparable or better for cations. These are the
default parameters, and they are:

is_solvation_beta 1.3

is_density_threshold 0.00035

Both parameterisations assume is_bulk_permittivity 78.54, which is suitable for water. It should be noted that
the model is deficient in its treatment of anions, consistently underestimating the magnitude of the solvation effect by
10-25%. Work is ongoing to fix this, until then a different parameterisation may be used if one is only interested in
anionic species.

Can you do solvents other than water?

Yes, provided you know the dielectric permittivity of the solvent and its surface tension. Accuracy has not been exten-
sively tested, but it should work.

Can you do mixed boundary conditions?

Not yet, but we might in the future.

Is implicit solvation compatible with conduction calculations?

Yes, to the best of our knowledge.

Is implicit solvation compatible with PAW?

Yes, to the best of our knowledge.

3.10.9 Known issues and untested functionality
• PBC are not yet currently compatible with the is_dielectric_exclusions block.
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3.10.10 Contact
General questions about implicit solvation in ONETEP should be directed to Jacek Dziedzic (J.
Dziedzic[-at-]soton.ac.uk). Questions regarding Boltzmann (electrolyte) solvation should be directed to
Arihant Bhandari (A.Bhandari[-at-]soton.ac.uk).
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This manual pertains to ONETEP versions v5.3.4.0 and later.

3.11.1 The basics
ONETEP offers linear-scaling calculation of Hartree-Fock exchange (HFx) and linear-scaling distributed multipole
analysis (DMA) through a variant of density fitting. In this approach products of two NGWFs are approximated (fitted)
using an auxiliary basis of spherical waves centred on the atoms on which the two NGWFs reside. Before the expan-
sion can be performed, an overlap matrix between spherical waves on all centres whose NGWFs overlap needs to be
calculated. The resultant matrix will be termed the metric matrix, and the process through which it is obtained will be

3.11. Spherical wave resolution of identity (SWRI), Hartree-Fock exchange (HFx), hybrid
functionals and distributed multipole analysis (DMA)
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termed spherical wave resolution of identity (SWRI). Understanding the keywords controlling SWRI is thus essential
for any calculation involving HFx or DMA.

3.11.2 Limitations
All calculations using SWRI have these limitations:

• Open boundary conditions (OBCs) are assumed in all uses of SWRI. If your calculation uses OBCs (via cut-off
Coulomb, Martyna-Tuckerman or multigrid [Hine2011]), this is a non-issue. If your calculation technically uses
PBCs, but you have sufficient vacuum padding in every direction (effectively making it approximately OBC),
this is a non-issue. If your system is truly extended in any direction (at least one NGWF sphere sticks out of the
cell and wraps around), this is an issue, as neither HFx nor DMA will work (producing nonsense). This is not
checked!

• All species must have identical NGWF radii. Without this simplification the numerical methods used in SWRI
would get ugly. Typically this is a non-issue, just increase the NGWF radii to the largest value. This might
admittedly be an issue if you have a single species that requires a large NGWF radius. This is checked against
and ONETEP will not let you do SWRI unless all NGWF radii are identical.

• Although well-controllable, density fitting is an approximation. Using settings that are too crude can lead to
inaccurate results and poor NGWF convergence.

• HFx is incompatible with PAW and ONETEP will refuse to use both simultaneously.

• HFx and DMA are incompatible with complex NGWFs and ONETEP will refuse to use both.

• HFx does not work with atoms that have 0 NGWFs, although this is hardly a limitation.

3.11.3 Spherical wave resolution of identity
Generating the metric matrix

Calculation of the metric matrix [Dziedzic2013] (Sec. II.D.1) is challenging. This is because products of spherical
waves (SWs) and products of a spherical wave with a potential of a spherical wave (SWpot) oscillate rapidly and cannot
be reliably integrated on a Cartesian or radial grid. ONETEP calculates the elements of the metric matrix by a piecewise
approximation of SWs and SWpots with high-order Chebyshev polynomials. Once this is done, their overlaps can be
calculated by overlapping a large number of polynomials, which is easy, but time consuming.

For a fixed set of atomic positions and chosen NGWF radii the metric matrix needs only be calculated once, this is done
during initialisation. The metric matrix does not depend on the NGWFs themselves or even the number of NGWFs per
atom.

In ONETEP versions prior to 5.1.2.3, metric matrix elements are evaluated using the method described in Ref.
[Dziedzic2013] (section II.D.1), i.e. by 3-D integration over piecewise expansions of SWs/SWpots in Chebyshev
polynomials. This is the “3-D Chebyshev” (3Dc) scheme.

For versions ≥ 5.1.2.3, an alternative metric matrix scheme is available in which metric matrix elements are decom-
posed into products of 2-D numerical and 1-D analytic integrals. This is the “2-D numerical, 1-D analytic” (2Dn-1Da)
scheme.

The separation of the 3-D integral in the 2Dn-1Da scheme is made possible by expressing metric matrix elements for
each atom pair in a molecular coordinate frame with the 𝑧-axis pointing along the vector between atomic centres and
with a set of SWs aligned in this coordinate system. When expressed in spherical polar coordinates, the 1-D integration
(over the azimuthal angle, 𝜑) is simple to evaluate analytically. The 2-D integration over (𝑟, 𝜃) can be performed by
the same approach used in the 3Dc method, i.e. evaluating integrals over piecewise expansions of the (𝑟, 𝜃)-dependent
parts of the SWs and SWpots in Chebyshev polynomials.

To obtain the metric matrix in the original set of SWs, which are aligned parallel to the 𝑧-axis of a global (simulation
cell) coordinate frame, the SWs in the molecular coordinate frame must be represented in terms of the SWs in the global
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coordinate frame. This is achieved by applying a rotation matrix to the real-spherical harmonic (RSH) components of
the SWs/SWpots associated with each atom pair.

For versions ≥ 5.1.5.0, the 2Dn-1Da scheme is the default for evaluating the electrostatic metric matrix. The 3Dc
scheme remains the default for the overlap metric matrix (O), since overlap metric matrix evaluation is not currently
supported in the 2Dn-1Da scheme.

Use of the 2Dn-1Da scheme to evaluate the electrostatic metric matrix is strongly recommended, as it reduces the
computational cost (in terms of memory and execution time) of evaluating the matrix by orders of magnitude compared
to the 3Dc scheme (with no apparent loss of accuracy).

To set up SWRI (for both 2Dn-1Da and 3Dc schemes), define the following block:

%block swri
*myname* :math:`l_{\textrm{max}}` :math:`q_{\textrm{max}}` *metric* :math:`N_{\textrm

→˓{i}}` :math:`N_{\textrm{o}}` *flags*
%endblock swri

Replace ``myname`` with a user-readable name for the SWRI, you will use it later to tell HFx or DMA which SWRI to
use (as you can have more than one SWRI).

[lmax] 𝑙max is the maximum angular momentum in the SW basis. Supported values are 0 (s-like SWs only), 1 (s- and
p-like SWs), 2 (s-, p- and d-like SWs), 3 (s-, p-, d- and f-like SWs) and 4 (you get the idea). For HFx choose 2 for a crude
calculation, 3 for good quality, and 4 for extreme quality. 0 and 1 will likely be too crude to fully NGWF-converge.
Expect 2 to recover more than 99% of HFx energy, and 3 to recover about 99.7%. See [Dziedzic2013] (Fig. 8) for an
illustrative guide. For DMA choose 0 if you’re only interested in atomic charges, 1 if you want charges and dipoles,
and 2 if you want charges, dipoles and quadrupoles. There is no point in using 3 or 4 for DMA. Be aware that the
computational cost grows as 𝒪(𝑙4max) (for the entire calculation), and the memory requirement grows as 𝒪(𝑙4max) (for
the entire calculation).

[qmax] 𝑞max is the number of Bessel (radial) functions in the SW basis. Adding more Bessel functions increases the
size of the basis (linearly) and improves quality. However, each subsequent Bessel function oscillates more rapidly and
beyond a certain point (at about 15 Bessel functions) they become difficult to represent on Cartesian grids of typical
fineness. As a guide, use 7 for a crude calculation, 10 for reasonable accuracy and 14 for extreme accuracy. Again,
see [Dziedzic2013] (Fig. 8) to see a graphical representation of the impact of this setting on accuracy. There is no
upper limit on the value of this parameter; however, ONETEP will refuse to include Bessel functions that oscillate too
rapidly for your KE cutoff – you will get a warning and high-numbered Bessel functions will be removed from the basis.
The computational cost grows as 𝒪(𝑞2max), and so does the memory requirement. Replace ``metric`` with V to use the
electrostatic metric in the SWRI, or with O to use the overlap metric. Specifying VO or OV will generate both metric
matrices, although that is not usually done. In general, prefer the electrostatic metric – the error in the energy due to
the density fitting approximation is then second-order in the fitting error, while for the overlap metric it is first-order.

As mentioned above, for ONETEP versions ≥ 5.1.5.0 the electrostatic metric (V) is evaluated by default using the more
efficient 2Dn-1Da scheme. The overlap metric (O) cannot (currently) be evaluated using this scheme, so is evaluated
using the more costly 3Dc scheme. Since only a single metric matrix scheme may be used at a time, if both metric ma-
trices are requested (VO or OV) then ONETEP will fall back to the 3Dc scheme. In this situation, it is worth considering
whether your calculation can be run with only the electrostatic metric in order to take advantage of the more efficient
2Dn-1Da scheme.

𝑁i is the number of intervals into which the integration domain will be divided along each axis for the purpose of Cheby-
shev interpolation. In the 3Dc scheme, this is the localisation sphere of an SW (an NGWF sphere, see [Dziedzic2013]
(Sec. II.D.1)), while in the 2Dn-1Da scheme this is a half-disc with the same radius. For 3Dc, 8 is the bare minimum,
10 is crude, 12 is accurate and 14 is extremely accurate. You should avoiding going overboard (recommended value
is 12), since the computational cost grows as 𝒪(𝑁3

i ) (only for the SWRI stage, the remainder of the calculation is not
sensitive to this value). The memory requirement grows as 𝒪(𝑁3

i ) (only for the SWRI stage). See [Dziedzic2013] (Fig.
5) to see how the accuracy of the metric matrix depends on this parameter when using the 3Dc scheme. For 2Dn-1Da,
the computational cost (𝒪(𝑁2

i )) and memory requirements (𝒪(𝑁2
i )) are considerably lower, so it is practical to use

𝑁i = 14 or larger for routine calculations. In this case, it is recommended to use 12 or greater. In particular, very crude
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(less than 10) values should be avoided when using 2Dn-1Da. Testing of DMA with the 2Dn-1Da scheme suggests
that the 2Dn-1Da scheme is more sensitive than 3Dc to lower values of 𝑁i (i.e. larger errors are produced in multipole
moments compared to values converged with respect to 𝑁i and 𝑁o). 𝑁o is the order of Chebyshev polynomials used
in the interpolation. Just like for 𝑁i, for the 3Dc scheme 8 is the bare minimum, 10 is crude, 12 is accurate and 14 is
extremely accurate. Again, you should avoid going overboard (recommended value1 is 12), since the computational
cost grows as 𝒪(𝑁4

o ) (only for the SWRI stage, the remainder of the calculation is not sensitive to this value). The
memory requirement grows as 𝒪(𝑁3

o ) (only for the SWRI stage). See [Dziedzic2013] (Fig. 5) to see how the accuracy
of the metric matrix depends on this parameter when using the 3Dc scheme. For 2Dn-1Da, the computational cost
(𝒪(𝑁3

o )) and memory requirements (𝒪(𝑁2
o )) are again considerably lower, so it is practical to use 𝑁o = 14 or larger

for routine calculations. In this case, it is recommended to use 12 or greater. For the reasons outlined above for 𝑁i,
very crude (less than 10) values of 𝑁o should be avoided when using 2Dn-1Da. For DMA, which is performed during
a properties calculation2, crude settings will simply lead to less accurate multipoles. In HFx, on the other hand, set-
tings that are too crude would prevent convergence because the exchange matrix would not be sufficiently symmetric.
ONETEP will abort your calculation if the exchange matrix is later found to not be symmetric to at least 3.4 digits. To
avoid frustration, do not go below 𝑁i = 10, 𝑁o = 10.

For the 2Dn-1Da scheme, the cost of evaluating the metric matrix is typically significantly smaller than the overall cost
of the subsequent calculation. In this case, it is practical to routinely use higher 𝑁i and 𝑁o values (e.g. 𝑁i = 𝑁o = 14
or 16).

Generating the metric matrix can be costly (particularly when using the 3Dc scheme). When restarting calculations
that crashed, ran out of walltime, for restarts to do properties, or re-runs with different settings it makes sense to save
the metric matrix to a file and re-use it during restarts. A metric matrix can be reused as long as the positions of the
atoms and the NGWF radii did not change. ``flags`` is a combination of one or more letters or numbers: W, R, P, Q,
X, E, D, 2, 3, controlling the behaviour of ONETEP during SWRI. The following flags instruct ONETEP to perform
particular actions:

• W – writes the metric matrix to a file, once it has been calculated in its entirety. The file will have the exten-
sion .vmatrix for the electrostatic metric matrix, and .omatrix for the overlap metric matrix. This is highly
recommended.

• R – reads the metric matrix from a file, instead of calculating it. The file will have the extension .vmatrix for
the electrostatic metric matrix, and .omatrix for the overlap metric matrix. This is highly recommended for
restart calculations. ONETEP will not allow you to use this flag when it knows the ions will move (TASK :
GEOMETRYOPTIMIZATION, TRANSITIONSTATESEARCH, MOLECULARDYNAMICS, PHONON, FORCETEST), as
the metric matrix gets invalidated once an ion moves.

• P – will instruct ONETEP to print the metric matrix in text form straight to the output. This can be useful for
visual inspection and debugging, although be aware that for larger systems the output can be bulky.

• Q – will instruct ONETEP to quit immediately after the metric matrix is calculated (and potentially written and/or
printed). This can be useful if the SWRI stage is run separately from the main calculation, e.g. on a large number
of CPU cores that would be excessive for the main calculation.

• X – means “none of the above” and should be used if you don’t intend to write, read, print the metric matrix and
you don’t want ONETEP to quit at this stage.

The remaining flags change how the SWRI is performed:

• 2 – forces use of the 2Dn-1Da metric matrix evaluation scheme, overriding the default selection. Note that the
2Dn-1Da scheme is currently only available for evaluation of the electrostatic metric matrix (V) and ONETEP
will abort with an error if the 2 flag is used in combination with the overlap metric matrix (O).

1 There is a caveat here when using the overlap metric (which you shouldn’t be doing anyway). At the boundary of the NGWF localisation region
a SW has a derivative discontinuity, while a SWpot is smooth together with its derivative. This discontinuity is poorly approximated with high-order
polynomials (Runge effect), and the problem becomes worse when the number of intervals is small. The setting 𝑁i=12, 𝑁o=12 is a poor choice
in this case. When using the overlap metric, always use the lowest possible Chebyshev order (2, a parabola) and a large number of intervals to
compensate. A decent setting, and with a comparable cost, would be 𝑁i=72, 𝑁o=2. Of course you should not be using the overlap metric in the first
place!

2 Unless you’re doing QM/MM calculations with polarisable embedding.
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• 3 – forces use of the 3Dc metric matrix evaluation scheme, overriding the default selection.

The 2 and 3 flags only have effect when computing the metric matrix. When reading the matrix from disk in full (R
flag), the flags have no effect, as the matrix has already been precomputed. When reading the matrix in part from
atomblocks (see below), the flags will only affect atomblocks that are not read from disk (i.e. need to be computed).

By using W and R you can re-use a fully calculated metric matrix. For large jobs which take many CPU-core-hours
you may want to re-use partial results simply because you may not have enough walltime to run the SWRI calculation
to completion. By default ONETEP writes partial results (metric matrix atomblocks) to files (*.[vo]matrixblock)
as it churns through the calculation. These matrixblocks will be automatically read from files if they can be found
– i.e. before starting to calculate a block, ONETEP will always first look for a corresponding file to try and avoid
the calculation, regardless of your ``flags``. Thus, if your SWRI calculation is interrupted, retain the matrixblock
files to make the next run complete faster. If you wrote the completed matrix to a file, there is no point in keeping
the matrixblock files and you should delete them to save disk space. If you would rather not have to delete them
manually, specify E (for “erase”) in ``flags`` and they will not be kept (or indeed written to). Each matrixblock file
encodes the position of the two atoms between which it is calculated in the filename. This proves useful in TASK
PHONON calculations and TASK GEOMETRYOPTIMIZATION calculations with some atoms fixed – atomblocks
between pairs of atoms that did not move will not be recalculated needlessly, but rather reloaded from files, unless
you specify E. Finally, the expert option D instructs ONETEP to disassemble the fully calculated metric matrix into
atomblocks (best used in combination with R and Q). This can be useful if you saved the metric matrix to a file, deleted
the matrixblock files, and later change your mind.

Examples

This creates an SWRI called for_hfx, with an expansion up to 𝑙=3, 10 Bessel functions, using the electrostatic metric.
Chebyshev interpolation will use 12 intervals and 12-order polynomials. The metric matrix will be written to a file.
That would be standard for a HFx calculation.

%block swri
for_hfx 3 10 V 12 12 W

%endblock swri

Like above, but will read the metric matrix from a file instead of calculating it.

%block swri
for_hfx 3 10 V 12 12 R

%endblock swri

This creates an SWRI called for_dma, with an expansion up to 𝑙=2, 12 Bessel functions, using the electrostatic metric.
Chebyshev interpolation will use 10 intervals and 12-order polynomials. The metric matrix will not be written to a file.
That would be standard for a DMA calculation.

%block swri
for_dma 2 12 V 10 12 X

%endblock swri

This creates an SWRI called hiqh_qual, with an expansion up to 𝑙=4, 16 Bessel functions (extremely large and accurate
SW basis set), using the overlap metric (not the best choice). Chebyshev interpolation will use 60 intervals and 2-order
polynomials (parabolas). The metric matrix will be written to a file, printed out in text form, the matrixblock files will
be erased, and ONETEP will quit.
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%block swri
high_qual 4 16 O 60 2 WPEQ

%endblock swri

This creates an SWRI called for_hfx_and_dma, with an expansion up to 𝑙=2, 9 Bessel functions, using the electrostatic
metric. Chebyshev interpolation will use 14 intervals and 14-order polynomials. The 2Dn-1Da metric matrix evaluation
scheme has been explicitly selected (for versions ≥ 5.1.5.0, this would not be necessary, as 2Dn-1Da is the default for
the electrostatic metric). The resulting metric matrix will be written to a file and the matrixblock files will be erased.

%block swri
for_hfx_and_dma 2 9 V 14 14 WE2

%endblock swri

As above, but with the 3Dc metric matrix scheme explicitly selected. This will likely be very costly compared to using
the 2Dn-1Da scheme.

%block swri
for_hfx_and_dma 2 9 V 14 14 WE3

%endblock swri

Choosing which species participate in a SWRI

For every SWRI defined like above you need to specify which atomic species participate in it. This allows performing
an SWRI for a subsystem, e.g. doing DMA only for atoms of a solute in the presence of a solvent, but not for atoms of
the solvent itself. In such a scenario atomblocks only need to be calculated between atoms such that at least one atom
belongs to the SWRI. For HFx this is less meaningful, and you will want to list all your species in the block. Note how
the block name includes the name of the SWRI defined above and may look like this:

%block species_swri-for_hfx
H
O
C
%endblock species_swri-for_hfx

if your SWRI was called for_hfx and your system is composed of species H, O and C.

Advanced SWRI options

swri_verbose (logical) – set this to T to get detailed information on matrixblock I/O. Useful when you want to
know where ONETEP is looking for matrixblock files and whether each file was succesfully loaded or not. This is
output from all MPI ranks, so can make the output cluttered. Default: F.

swri_cheb_batchsize (integer) – sets the size of the batches in which SWs are processed in the calculation of the
metric matrix. For the 3Dc scheme, the default is 12. Increasing this value can improve efficiency (by better balancing
threads), but will increase memory load. Keep this divisible by the number of OMP threads for best performance. For
the 2Dn-1Da scheme, batching has little benefit and can lead to significant load imbalance across MPI processes for
larger systems. Thus, the default for 2Dn-1Da is the number of SWs in the auxiliary basis set. For both schemes, if this
value is set larger than the number of SWs in the auxiliary basis set, it will be capped accordingly.
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swri_assembly_prefix (string) – sets the prefix for the matrixblock files that are assembled into the metric
matrix. The default is the rootname of your ONETEP input. Adjusting this can be useful if you keep a large number of
matrixblock files in one directory and have multiple calculations, in different directories, using these matrixblock files.

swri_proximity_sort_point (string of three values in bohr) – metric matrix blocks are evaluated in
order, with blocks between atoms closest to a predefined point done first. This is useful if you have a giant SWRI
calculation (say for a solute and a few solvation shells) and would like other calculations to start using first matrix
blocks as soon as possible (e.g. for calculations on just the solute). Using this keyword you can choose the point for
sorting the atomblocks. The default is 0.0 0.0 0.0. A unit of bohr is implicitly added (do not specify it).

swri_swop_smoothing, swri_overlap_indirect, swri_improve_inverse – these are experimental features,
do not use these.

3.11.4 Hartree-Fock exchange
Now that you have SWRI set up, a basic HFx (or hybrid functional) calculation should be simple to set up. The following
three keywords are mandatory and do not provide defaults:

hfx_use_ri (string) – tells HFx which SWRI to use. Specify the name used in the SWRI block, e.g. hfx_use_ri
for_hfx.

hfx_max_l (integer) – specifies the maximum angular momentum in the SW basis. In most scenarios this will be
equal to 𝑙max that you specified in the SWRI block. Read the description of 𝑙max (Sec. [lmax]) to understand the meaning
of this parameter. You can use a lower value than the one specified in the SWRI block if you want to use only a subset
of the SW basis set (e.g. for benchmarking, or doing DMA with a lower 𝑙max than you use for HFx), but not for HFx
(where you must use the same value that you used in the SWRI block).

hfx_max_q (integer) – specifies the number of Bessel functions in the SW basis for each angular momentum chan-
nel. In most scenarios this will be equal to 𝑞max that you specified in the SWRI block. Read the description of 𝑞max
(Sec. [qmax]) to understand the meaning of this parameter. You can use a lower value than the one specified in the
SWRI block if you want to use only a subset of the SW basis set (e.g. for benchmarking, or doing DMA with a lower
𝑞max than you use for HFx), but not for HFx (where you must use the same value that you used in the SWRI block).

With the above set up, the last step is to choose a suitable functional through xc_functional. The following hybrid
functionals use HFx: B1LYP, B1PW91, B3LYP, B3PW91, PBE0, X3LYP. For a pure Hartree-Fock calculation use HF.

The following two keywords might be handy:
hfx_cutoff (physical) – specifies the distance-based cutoff for all HFx interactions. The default is 1000 bohr,
which effectively corresponds to no truncation. In the absence of truncation ONETEP’s HFx implementation scales
as 𝒪(𝑁2), so you are advised to use HFx truncation even if you do not use density kernel truncation. Exchange
interactions are rather short-ranged, and for systems with a band-gap it should be safe to truncate them at 20𝑎0. See
[Dziedzic2013] (Figs. 19, 20) for more details. Do not use a value smaller than twice the NGWF radius.

hfx_metric (string) – selects the metric actually used for HFx calculations. The default is electrostatic.
The other option is overlap. The appropriate metric matrix must have been included at the SWRI stage (V or O,
respectively).

Other HFx-related keywords (hfx_nlpp_for_exchange, hfx_read_xmatrix and hfx_write_xmatrix) corre-
spond to experimental features and should not be used.

Example

The following is a bare-bones example for a reasonably good-quality HFx calculation on a slightly distorted water
molecule. That should converge in 11 NGWF iterations within 1.5 minute on a desktop machine (2 MPI ranks, 4 OMP
threads each), requiring about 4 GiB of RAM.
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xc_functional B3LYP
cutoff_energy 800 eV

%block swri
for_hfx 3 10 V 10 10 WE

%endblock swri

%block species_swri-for_hfx
O
H
%endblock species_swri-for_hfx

hfx_use_ri for_hfx
hfx_max_l 3
hfx_max_q 10

%block lattice_cart
25.00 0.00 0.00
0.00 25.00 0.00
0.00 0.00 25.00

%endblock lattice_cart

%block positions_abs
ang
O 5.79564200 7.40742600 6.63194300
H 5.19938100 8.05407400 6.24141400
H 5.16429100 6.74016800 6.88482600
%endblock positions_abs

%block species
O O 8 4 8.0
H H 1 1 8.0
%endblock species

%block species_pot
O "oxygen.recpot"
H "hydrogen.recpot"
%endblock species_pot

3.11.5 DMA
DMA (Distributed Multipole Analysis) is a technique for partitioning charge density into single-atom contributions and
finding a set of point multipoles that most accurately represent this charge density. The point multipoles are usually,
although not universally, atom-centered – this is the case in ONETEP. DMA was proposed by Rein [Rein1973] and
has been pioneered and popularised by Stone [Stone1981] and Alderton [Stone1985]. It is typically performed in a
Gaussian basis set [Stone1998], [Stone2005], but ONETEP uses a version adapted to the NGWF basis. More details
on our approach can be found in Refs. [Dziedzic2016], [Vitale2015].

DMA in ONETEP first uses SWRI (cf. earlier Sections) to expand NGWF-NGWF overlaps (not exactly atom-pair
densities, because there is no density kernel there) in an auxiliary SW basis set. Depending on the metric, this density
fitting will strive to either minimise the difference in electronic density between the original density and the fit (for
the overlap metric), or the electrostatic energy of the difference in densities interacting with itself (for the electrostatic
metric). The use of electrostatic metric is preferred. Once the NGWF-NGWF overlaps are expressed in an SW basis,
owing to certain properties of SWs and to the fact that in ONETEP they are chosen to be atom-centered, it becomes
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easy to find atom-centered point multipoles that yield the (exactly) equivalent potential. This stage is termed spherical
wave expansion (SWX) and its result are atom-centered point multipoles that are the best fit to the original electronic
density (under the assumed metric). Apart from calculating electronic multipoles, ONETEP’s DMA also calculates
total (electronic + ionic core) atom-centered multipoles. Also calculated are the total multipoles of the system (e.g.. the
molecular dipole or quadrupole), suitably averaged over all the atoms that were part of the SWRI. For non-neutral
molecules the value of the dipole depends on the point where it is calculated (similarly for higher multipoles), and so
the total multipoles are calculated at a reference point of your choosing.

DMA in ONETEP is performed in two contexts. The most common is during a task properties calculation
(“properties-DMA”). The other use of DMA is in QM/MM calculations using ONETEP and tinker (tinktep approach,
cf. [Dziedzic2016], “polemb-DMA”). Some DMA keywords pertain to both contexts, and some pertain only to one of
them – this will be carefully highlighted. It is possible to mix the two to a reasonable degree (i.e. to perform QM/MM
with one set of DMA parameters, and properties-DMA at the end of the run, with another set of parameters). By
“reasonable degree” I mean that some of the parameters are shared.

DMA: minimal set-up

To use DMA, first set up SWRI (cf. earlier Sections). Now that you have SWRI set up, a basic calculation using DMA
should be simple to set up. First, specify dma_calculate T to enable DMA, as it is off by default. Once you’ve done
that, the following keywords become mandatory:

dma_use_ri (string) – tells DMA which SWRI to use. Specify the name used in the corresponding SWRI block,
e.g. dma_use_ri for_dma.

dma_max_l (integer) – specifies the maximum angular momentum in the SW basis used in DMA. In most scenarios
this will be equal to 𝑙max that you specified in the SWRI block. Read the description of 𝑙max (Sec. [lmax]) to understand
the meaning of this parameter. You can use a lower value than the one specified in the SWRI block if you want to use
only a subset of the SW basis set (e.g. for benchmarking). This keyword only affects properties-DMA, the equivalent for
polemb-DMA is pol_emb_dma_max_l. This keyword needs to be specified even if you do not plan to use properties-
DMA (in that case, specify 0). If you only care about atom-centered charges, specify 0. If you care about atom-centered
charges and dipoles, specify 1. If you care about atom-centered charges, dipoles and quadrupoles, specify 2.

dma_max_q (integer) – specifies the number of Bessel functions in the SW basis for each angular momentum chan-
nel to be used in DMA. In most scenarios this will be equal to 𝑞max that you specified in the SWRI block. Read the
description of 𝑞max (Sec. [qmax]) to understand the meaning of this parameter. You can use a lower value than the
one specified in the SWRI block if you want to use only a subset of the SW basis set (e.g. for benchmarking). This
keyword only affects properties-DMA, the equivalent for polemb-DMA is pol_emb_dma_max_q. This keyword needs
to be specified even if you do not plan to use properties-DMA (in that case, specify 0).

Non-mandatory keywords affecting both properties-DMA and polemb-DMA

dma_metric (string) – selects the metric used for DMA calculations. The current default is electrostatic.
The other option is overlap. The appropriate metric matrix must have been included at the SWRI stage (V or O,
respectively). This keyword affects both properties-DMA and polemb-DMA.

dma_bessel_averaging (boolean) – specifies whether all DMA-based multipoles are to be averaged over an even-
odd pair of 𝑞max. Multipoles obtained with DMA display an oscillatory behaviour when plotted as a function of 𝑞max.
This has to do with how the Bessel functions sample the radial profile of NGWFs. In essence, for all even 𝑞max a
particular multipole will be overestimated, while for all odd 𝑞max the same multipole will be underestimated (or the other
way round). Other multipoles will be affected similarly (except in reverse) to compensate. This oscillatory behaviour
decays as the quality of the SW basis is increased, but the decay is slow. Much more stable multipoles are obtained by
averaging the results of two SWX runs – one with the 𝑞max the user specified in dma_max_q, and one with 𝑞max that is
less by one. This even-odd averaging can be performed automatically by specifying dma_bessel_averaging T, and
this is done by default. When this option is enabled, output files include multipoles obtained with both SWX qualities,
followed by the average, except for the .dma_multipoles_gdma_like.txt file, which will contain only the final,
averaged multipoles. There is no extra effort associated with this option at the SWRI stage, and the effort of the SWX
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stage (which is usually much, much lower) is practically doubled (two separate SWXs have to be performed). This
keyword affects both properties-DMA and polemb-DMA.

dma_scale_charge (boolean) – specifies DMA charge-scaling is to be performed (default) or not. This an impor-
tant option. The multipoles obtained with DMA are always approximate. The total DMA monopole (charge) will be
close to, but not exactly equal to, the total charge of the system (or its subset, if DMA’s SWRI did not encompass all
atoms). This means that the total DMA monopole of a nominally neutral system will not be exactly zero, but typi-
cally a very small fraction of an electron. This is inconvenient, because it formally breaks the translational invariance
of the total dipole, which begins to depend, very slightly, on the reference point where it is calculated. The easiest
workaround is to scale, a posteriori, the DMA monopole by the ratio of expected charge to the obtained DMA charge.
This scaling is factor will be very close to zero (e.g. 0.9998), unless your SW basis set is very crude (single-digit 𝑞max,
etc.). The “expected” (electronic) charge either obtained automatically (by default), or can be specified manually using
dma_target_num_val_elec. When not specified manually, the expected electronic charge is determined as follows.
If DMA’s SWRI encompasses all atoms (“full-system DMA”), it is equal to the total number of valence electrons in
the system (obtained from Tr [KS]). If DMA’s SWRI does not encompass all atoms (“subsystem DMA”), Mulliken
analysis is performed every time charge-scaling needs to be done (essentially at every LNV step, or twice per LNV
step when Bessel averaging is used), and Mulliken charges of all atoms within DMA’s SWRI are summed to obtain
the expected electronic charge. Using DMA charge-scaling is recommended (hence it’s on by default), but care must
be taken when using it with polemb-DMA (there are no issues with properties-DMA). The following issues and lim-
itations arise. (1) In polemb-DMA the DMA multipoles enter LNV and NGWF gradient expressions. The quantity
Tr [KS] is not strictly a constant, and has non-zero DKN and NGWF derivatives, leading to additional terms in LNV
and NGWF gradients when charge-scaling is used. These extra terms have been implemented for LNV gradients, but
not for NGWF gradients, where they become really hairy (these are under development). Hence the threefold combi-
nation of polemb-DMA, charge-scaling and NGWF optimisation is not permitted (will refuse to run). (2) The threefold
combination of polemb-DMA, charge-scaling and dma_target_num_val_elec is not permitted (will refuse to run),
regardless of whether NGWF optimisation is used or not. This is because the expected number of electrons becomes
constant (user-specified value) in this scenario, which is incompatible with the charge-scaling corrections accounting
for Tr [KS]. Long story short: use DMA charge-scaling for properties-DMA, but not for polemb-DMA. This keyword
affects both properties-DMA and polemb-DMA.

dma_target_num_val_elec (integer) – specifies the expected number of valence electrons for DMA. This key-
word should only be used when DMA charge-scaling is in effect (see above), and only if the automatic determination
of the expected number of electrons (see above) in the part of your system seen by DMA is not satisfactory. The default
is for this keyword to be omitted. This keyword affects both properties-DMA and polemb-DMA.

polarisation_simcell_refpt (real real real). The default is 0.0 0.0 0.0. Specifies the reference point
in the simulation cell (in bohr) at which total DMA multipoles are calculated. This is mostly useful if your system
(strictly speaking: your DMA subsystem) is not charge-neutral and you are interested in the value of the total dipole.
When the system is non-neutral, the total dipole is not translation invariant, and a reference point for calculating it needs
to be specified. This keyword specifies this reference. Also note that when a simcell full-density polarisation calcula-
tion is performed (via task properties and polarisation_simcell_calculate), this keyword also adjusts this
calculation’s reference point. This keyword affects both properties-DMA and polemb-DMA.

dma_precise_gdma_output (boolean). The default is on (T). One of the files output by DMA is the .
dma_multipoles_gdma_like.txt file, which is formatted as to be compatible with the output generated by Stone’s
GDMA program. This output can be directly used by other programs expecting input in this format. The original
GDMA format is fixed-form, meaning the precision of the output multipoles is rather restricted by the number of
digits that can be output. In polemb-DMA mode this precision is insufficient to accurately drive the MM calcula-
tion performed by an external program (tinker). Specifying dma_precise_gdma_output T instructs ONETEP to
output multipoles with the additional necessary precision, but breaks strict compatibility with the GDMA format. If
the external program you use to parse the GDMA file is aware of that (e.g. tinker can be suitably patched), this is
fine. If you have no control over the external program and need ONETEP to adhere strictly to the GDMA format, use
dma_precise_gdma_output F.
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Expert, non-mandatory keywords affecting both properties-DMA and polemb-DMA

Just don’t. These are used for experimental purposes, particularly in QM/MM.

dma_multipole_scaling (real) – causes all DMA multipoles to be scaled by a constant. This affects both the
output multipoles and the multipoles used internally in polemb expressions. Whenever necessary (during charge-
scaling, in gradients) this scaling is temporarily undone internally for consistency. This keyword affects both properties-
DMA and polemb-DMA.

dma_dipole_scaling (real) – causes all DMA dipoles to be scaled by a constant. This affects both the output
dipoles and the dipoles used internally in polemb expressions. Whenever necessary (essentially in gradients) this scaling
is temporarily undone internally for consistency. This keyword affects both properties-DMA and polemb-DMA.

dma_quadrupole_scaling (real) – causes all DMA quadrupoles to be scaled by a constant. This affects both the
output quadrupoles and the quadrupoles used internally in polemb expressions. Whenever necessary (essentially in
gradients) this scaling is temporarily undone internally for consistency. This keyword affects both properties-DMA
and polemb-DMA.

Non-mandatory keywords affecting only properties-DMA

dma_output_potential (boolean). The default is off (F). When turned on (T), during properties-DMA the electro-
static potential due to all DMA electronic multipoles is calculated on the 𝑧 = 0 and 𝑧 = 𝑧max faces of the simulation cell
(on all fine-grid points lying on those faces). This potential is output to text files. This is useful for assessing the quality
of the DMA approximation to the full, distributed charge density. If DMA’s SWRI does not span the entire system, the
output potential is only due to those atoms included in DMA’s SWRI. This keyword affects only properties-DMA.

dma_output_potential_reference (boolean). The default is off (F). When turned on (T) and
dma_output_potential is also on, during properties-DMA the reference electrostatic potential due to the
full, distributed electronic density is calculated on the 𝑧 = 0 and 𝑧 = 𝑧max faces of the simulation cell (on all fine-grid
points lying on those faces). This potential is output to text files. This is useful to obtain a reference for assessing the
quality of the DMA approximation to the full, distributed charge density (see above). Regardless of whether DMA’s
SWRI spans the entire system or not, the output potential is due to all electrons in the system. Thus, the two sets of
potentials are only comparable in full-system DMA. The reference potential is calculated by a pointwise integration
over the entire volume (fine-grid) for every point on the two faces, which is a time-consuming process, so use sparingly.
This keyword affects only properties-DMA.

Non-mandatory keywords affecting only polemb-DMA

Refer to the separate documentation for polarisable embedding in ONETEP.

Example

The following is a bare-bones example for a reasonably good-quality properties-DMA calculation on a slightly distorted
water molecule. That should converge in 11 NGWF iterations within 1 minute on a desktop machine (2 MPI ranks,
4 OMP threads each), requiring about 3 GB of peak RAM.

xc_functional PBE
cutoff_energy 800 eV

do_properties T

%block swri
for_dma 2 14 V 12 12 WE

%endblock swri

%block species_swri-for_dma
(continues on next page)
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(continued from previous page)

O
H
%endblock species_swri-for_dma

dma_calculate T
dma_use_ri for_dma
dma_metric electrostatic
dma_max_l 2
dma_max_q 14

dma_scale_charge T
dma_bessel_averaging T

%block lattice_cart
25.00 0.00 0.00
0.00 25.00 0.00
0.00 0.00 25.00

%endblock lattice_cart

%block positions_abs
ang
O 5.79564200 7.40742600 6.63194300
H 5.19938100 8.05407400 6.24141400
H 5.16429100 6.74016800 6.88482600
%endblock positions_abs

%block species
O O 8 4 8.0
H H 1 1 8.0
%endblock species

%block species_pot
O "oxygen.recpot"
H "hydrogen.recpot"
%endblock species_pot

Expected results:

Description Dipole (au) Dipole (debye)
Full density (cores + NGWFs) 0.7564 1.9226
DMA (point multipoles, 𝑞max=14) 0.7477 1.9005
DMA (point multipoles, 𝑞max=13) 0.7680 1.9519
DMA (point multipoles, Bessel-averaged) 0.7578 1.9261

Table: Dipole moment of distorted water molecule. Comparison of accuracy: full density vs. DMA point multipoles.

3.11.6 Advanced options
Making Hartree-Fock exchange faster or less memory-hungry

Hartree-Fock exchange is not fast, although we’ve made great improvements in v5.3.4.0. For small systems (< 200
atoms), with a bit of luck, it will be an order of magnitude slower than GGA calculations. For large systems (≈
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1000 atoms) expect it to be two orders of magnitude slower.

The main way to improve performance is by using more RAM – this is because there are plenty of opportunities for
caching some results that would otherwise have to be recomputed. If HFx was to cache everything, it would quickly
exhaust all available RAM, even on well-equipped machines. Therefore, there are limits in place for each of the caches.
These limits are expressed in MiB (1048576 bytes) and are per MPI rank.

Remember that OMP threads can share memory, while MPI ranks cannot. This means that the key to obtaining high
performance with HFx is to use as many OMP threads as possible. In most HPC settings this will mean using only
2 MPI ranks per node (one MPI rank per NUMA region, most HPC nodes have two NUMA regions). For example on
Iridis5, with 40 CPU cores on each node, best performance is obtained by using 2 MPI ranks, with 20 OMP threads
each, on every node. This is in contrast to non-HFx calculations, which typically achieve peak performance for 4-5
OMP threads. HFx is well-optimised for high thread counts. By reducing the number of MPI ranks, you allow each
rank to use more RAM. This is the key to success. Don’t worry about the drop in performance of the non-HFx part, it
will be dwarfed by the gain in HFx efficiency.

The easiest way to control how much RAM HFx can use is via the parameter hfx_memory_limit. The default value
is 4096, meaning HFx will not ask for more than 4 GiB of RAM per MPI rank. This is in addition to any memory
use from the rest of ONETEP. If you can spare more RAM, definitely tell this to the HFx engine by saying e.g.

hfx_memory_limit 16384! I have 16 GiB per MPI rank to spare.

The HFx engine will automatically distribute this RAM across the three main caches. Or, more specifically, it will first
consume the amount of RAM absolutely needed for core HFx functionality, and then distribute the rest to the three
caches. You will get a banner informing you about how much memory went into satisfying the minimum requirements:

+----------------------------------------------------+
| HFx TEFCI engine: minimum requirements |
| Estimated memory requirement per MPI rank |
+----------------------------------------------------+
| Radial Bessel lookup : 30.52 MB |
| Dd NGWFs hash table : 1.66 MB |
| All remote NGWFs hash table : 37.38 MB |
| dlists hash table : 6.53 MB |
| coeffs hash table (estimate) : 26.93 MB |
| V metric matrix hash table : 377.59 MB |
| f auxiliary term : 131.78 MB |
| P term in NGWF gradient : 131.78 MB |
| Q term in NGWF gradient : 238.88 MB |
| My kets in NGWF grad. (estimate) : 78.09 MB |
| Local kets in NGWF grad. (estim.) : 43.20 MB |
| K^{CD} hash table : 3.88 MB |
| K^{AB} hash table : 3.60 MB |
| tcK^A_B hash table : 3.60 MB |
| tcK^B_A hash table : 3.60 MB |
+----------------------------------------------------+
| Estimated peak total per MPI rank : 1.09 GB |
+----------------------------------------------------+

In the event that the memory limit specified with hfx_memory_limit is below even the minimum requirement (1.09
GB in the example above), you will get an error message explaining how much more RAM you would need to continue.
Be aware of two things: (1) calculations with not much (or no) memory above the minimum requirement will be very
slow, (2) the above is only an estimate. Under some circumstances HFx may consume slightly more memory, but not
much. If you run out of memory, it is usually the NGWF gradient calculation (its non-HFx part) that breaks the camel’s
back.

Another banner informs you about how the remaining RAM is divided across the three caches (“hash tables”). It may
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look like this:

HFx: - Adjusting cache sizes according to weights: 0.6250, 0.3125, 0.0625.
+----------------------------------------------------+
| HFx TEFCI engine: user-adjustable requirements |
| Estimated memory requirement per MPI rank |
+----------------------------------------------------+
| SWOP hash table : 3.61 GB |
| Expansions hash table : 1.81 GB |
| AD NGWF products hash table : 369.00 MB |
+----------------------------------------------------+
| Estimated peak total per MPI rank : 5.77 GB |
+----------------------------------------------------+
HFx: - Peak memory use capped at 6998.2 MB per MPI rank.

Here the user specified hfx_memory_limit 7000 and HFx distributed the remaining 5.77 GB across the three caches
with a default set of weights that is 10:5:1 (= 10

16 : 5
16 : 1

16 = 0.6250 : 0.3125 : 0.0625). This is an empirically
determined near-optimal default for valence calculations. For conduction calculations the default is to give all remaining
RAM to the SWOP hash table, because in conduction calculations expansions are never re-used and the number of
NGWF products is so large, that it’s faster to give up on storing them entirely.

The three caches store, respectively:

• Spherical waves or potentials thereof (“SWOPs”). Generating SWOPs is typically the main bottleneck of any HFx
calculation, and increasing the size of this cache will lead to significant improvements, with returns diminishing
after hit ratios exceed 90-95%.

• Spherical wave expansions (potentials of linear combinations of spherical waves on a centre). These can help
performance too, but their size quickly becomes unwieldy.

• NGWF products. Less useful than the above, but cheap to store, except in conduction calculations.

In general, it is best to rely on the default division and to specify only hfx_memory_limit. However, if you feel you can
do better, you can manually set the maximum for any number of caches, using the directives cache_limit_for_swops,
cache_limit_for_expansions, cache_limit_for_prods. This might be useful if you specifically want to disable
one or more of the caches (by specifying 0). Remember that hfx_memory_limit is still in effect by default, even if
you do not specify it, and it will interact with the above. If you want to turn off the automatic balancing of memory
limits, specify hfx_memory_limit -1. Once you do this, the specified cache limits will be used (with a default of
1024). Finally, if you keep the automated balancing, hfx_memory_weights, which accepts three real numbers, can be
used to set the desired weights, if you are not satisfied with the default. The weights do not need to add to 1, they will
be automatically rescaled. They cannot all be zero, but some of them can be zero (which then turns off the associated
cache).

The utilisation of each cache is reported at some stage of the calculation (assuming hfx_output_detail is at NORMAL
or higher). You will see banners like this:

+------------------------------------------------------------------------------+
| MPI | | | | |
| rank | SWOP cache capacity | SWOPs needed | Cacheable | Hit ratio |
+------------------------------------------------------------------------------+
| 0 | 3691 MiB (24189 el) | 109140 el | 22.16% | 58.70% |
| 1 | 3691 MiB (24189 el) | 109140 el | 22.16% | 58.85% |
+------------------------------------------------------------------------------+

This is a breakdown over all MPI ranks (only two in this case), informing you that you devoted about 3.7 GB per MPI
rank to the SWOP cache, which enables caching 24189 elements, whereas 109140 elements could be stored, if you had
more RAM. You were thus able to cache about 22% of all elements, but because HFx stores the most reusable ones
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first, the cache hit ratio will be about 59% – that is, in 59% of cases when HFx will be looking for a SWOP, it will find
it in the cache. Different SWOPs will be needed on different nodes, hence the hit ratios are not exactly equal. Looking
up SWOPs in the cache is at least an order of magnitude faster than recaculating them, so you should aim for a hit ratio
of at least 90%.

Banners for the expansion and NGWF product caches will be printed after the first LNV (or EDFT) iteration (for
hfx_output_detail VERBOSE) or after every energy evaluation (for hfx_output_detail at PROLIX or higher).
They look like this:

HFx: +-----------------------------------------------------------------------+
HFx: | MPI | Expansion cache |
HFx: | rank | hits | misses | total | hit ratio |
HFx: +-----------------------------------------------------------------------+
HFx: | 0 | 1982298 | 13369145 | 15351443 | 12.91 % |
HFx: | 1 | 1947916 | 13512601 | 15460517 | 12.60 % |
HFx: +-----------------------------------------------------------------------+
HFx: +-----------------------------------------------------------------------+
HFx: | MPI | AD NGWF product cache |
HFx: | rank | hits | misses | total | hit ratio |
HFx: +-----------------------------------------------------------------------+
HFx: | 0 | 1947809 | 7499676 | 9447485 | 20.62 % |
HFx: | 1 | 1992291 | 7737078 | 9729369 | 20.48 % |
HFx: +-----------------------------------------------------------------------+

and show you a per-MPI-rank breakdown of how many hits and misses were recorded in accessing the cache, and what
the hit ratio was. You will be able to achieve 100% only for the smallest of systems,

Changing cache limits only affects the tradeoff between RAM and CPU time, it has absolutely no effect on results,
only on the time and memory it will take to arrive at them. If you are very pressed for RAM, you can set all the above
cache sizes to 0. This will stop caching altogether, conserving memory, but will vastly increase run time, by a factor
of several.

A simple, perhaps surprising, way of increasing performance (slightly) is by using PPDs that are not flat. By default
ONETEP initialises the third dimension of a PPD to 1, making them flat. This makes sense in the absence of HFx.
With HFx the book-keeping of the caching machinery will be faster when the PPDs are slightly larger. Preferably use
ppd_npoints to make the PPDs 5 × 5 × 5 or 7 × 7 × 7. It might be necessary to explicitly set psinc_spacing and
carefully choose the box dimensions. An easy solution is to choose psinc_spacing 0.5 0.5 0.5which corresponds
to a kinetic energy cutoff of 827 eV, and to make your box dimensions divisible by 2.5 𝑎0 (for 5 × 5 × 5 PPDs).

Finally, you can try omitting some terms in the expansion, if the expansion coefficients are below a certain threshold.
This will affect the accuracy of your results, and so by default nothing is thrown away. This can be done via the keyword
swx_c_thresholdwhich takes a real number as an argument. Whenever an NGWF-pair expansion coefficient is below
this value, potentials from this particular SW for this pair of NGWFs will not even be generated. This can be used in
conjunction with a distance-based truncation. A value like 1E-5 will throw away maybe 2-3% of the terms. 1E-3
will throw away about 10-15% (so, little gain), and this will be enough to impair your NGWF convergence. I do not
recommend changing this setting.

Other advanced options

swx_output_detail (string) – controls the verbosity of the spherical wave expansion. Allowed options: BRIEF,
NORMAL, VERBOSE. Defaults to NORMAL. At VERBOSE you might feel overwhelmed by the output from all MPI ranks
letting you know which atom they are working on (lines looking like “+ A: 1” or “- B: 1”). This is useful for big
systems, where it takes a while to get from one LNV iteration to the next one, with no output otherwise.

hfx_output_detail (string) – controls the verbosity of Hartree Fock exchange. Allowed options: BRIEF,
NORMAL, VERBOSE, PROLIX, MAXIMUM. Defaults to the value of output_detail. At VERBOSE you might feel over-
whelmed by the output from all MPI ranks letting you know which atom they are working on (lines looking like “-
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B: 1 [0] (1)”). This is useful for big systems, where it takes a while to get from one LNV iteration to the next one,
with no output otherwise. At PROLIX there is even more feedback. At MAXIMUM even the 𝑋 matrix is printed, which
will make your output file extremely big. This is recommended only when debugging. The recommended setting is
VERBOSE.

hfx_bessel_rad_nptsx (integer) – specifies how many points are used in the radial interpolation of Bessel func-
tions. The default is 100000 and should be sufficient. Increasing this value (perhaps to 250000 or so) improves accuracy,
particularly if your simulation cell is large, but there is an associated linear memory cost (typically in tens of MB per
MPI rank).

use_sph_harm_rot (logical) – Manually activate the sph_harm_rotation (spherical harmonic rotation) module
(used to evaluate the metric matrix in the 2Dn-1Da scheme). In normal operation this is not necessary, since the module
will be activated if it is detected that spherical harmonic rotation is required. Setting this is to false has no effect, since
the option will be overridden if ONETEP detects that the module is needed, anyway.

swx_dbl_grid – experimental functionality, please do not use.

devel_code values

SHROT:DEBUG=[T/F]:SHROT – Activate debug mode for the sph_harm_rotation module

SHROT:UNIT_TEST=[T/F]:SHROT – Activate unit testing for the sph_harm_rotation module

3.11.7 Frequently asked questions
What hybrid functionals are available in ONETEP?

B1LYP, B1PW91, B3LYP, B3PW91, PBE0, X3LYP. For a pure Hartree-Fock calculation use HF.

How big can my system be when using HFx?

Up to 200 atoms should be a breeze on a desktop machine (64 GB RAM, 16 cores). About 500-600 atoms will be a
limit for a desktop machine, but it might take a week or two. Larger systems will be off-limits because you will either
run out of memory (if using > 1 MPI rank), or hit sparse_mod integer overflows (if using 1 MPI rank).

On a HPC cluster (say, 640 cores) up to 1000 atoms should not be too difficult (3-4 days). Current record is 4048 atoms
(640 cores, 20 days, June 2020). With significant resources (5000+ cores) you should be able to do 10000 atoms, but
this has not been tried.

How do I make HFx faster?

Use as many OMP threads as possible, without crossing NUMA regions. On a typical HPC system this will mean
using only 2 MPI ranks per node, and on a desktop machine – only 1 MPI rank. This will minimise the number of
MPI ranks, allowing you to give much more memory to each of them. Increase hfx_memory_limit from the default
value of 4096 to however much you can spare. This is the maximum RAM consumption of HFx (on top of the rest
of ONETEP) per MPI rank. Here it is always the higher the better, except you don’t want to run out of memory. Use
ppd_npoints 5 5 5 or ppd_npoints 7 7 7 for a slight efficiency gain.

I’m running out of memory

Symptoms: you get error messages like “Killed”, or “Out of memory: Kill process nnn (onetep.exe)” in dmesg output,
or your system starts thrashing (swapping memory to HDD). What you can do:

• Reduce the number of MPI ranks per node. In the worst case scenario, undersubscribe (leave some cores idle),
even to the point of having only 1 MPI rank per node.

• Reduce hfx_memory_limit from the default value of 4096 to something smaller.

• Reduce the quality of the SW expansion (𝑙max, 𝑞max) (this will affect the quality of results).
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• If you’re running out of memory at the NGWF gradient stage, reduce threads_num_fftboxes. The default is
equal to the number of OMP threads. Reduce it to 1. This is a component of ONETEP that consumes quite a bit
of RAM irrespective of whether HFx is used or not.

• Use high-memory nodes. Many HPC facilities provide these.

• Increase the number of compute nodes used in the calculation. Some of the necessary data will be distributed
across nodes, reducing per-node load. With a large number of OMP threads, you can easily use much more CPUs
than you have atoms in your system.

The HFx engine does not use all the memory I asked it it to use. Why?

If you devote too much memory to one of the caches, only as much will be used as is needed to store all that is needed.
Perhaps adjust hfx_memory_weights to give this memory to where it is needed more.

My calculation aborts with Error in sparse_count_ss: Integer overflow in sparse matrix
index detected.What now?

Your sparse matrices are too large, overflowing integer indices in ONETEP’s sparse matrix machinery. Essentially
you are trying to run a calculations with too many atoms on too few MPI ranks. Increase the number of MPI ranks or
decrease hfx_cutoff. The latter will impact results.

My calculation crashes with a SIGSEGV and the last line of output is “KSKS matrix filling:”. What now?
————————————————————————

Same as above, except the integer overflow has not been detected.

My calculation aborts with Exchange matrix not deemed accurate enough for a stable
calculation. What now?

One of the approximations broke down. You turned the “speed vs. accuracy” knob too far towards “speed”.

• Is your SW expansion quality too low? The minimum reasonable quality is about 𝑙max = 2, 𝑞max = 8, see
[Dziedzic2013] (Fig. 8). For some systems this might not be enough, particularly in pure Hartree-Fock calcula-
tions (xc_functional HF). Try 𝑙max = 3, 𝑞max = 10.

• Is your KE cutoff too low? In general, don’t go below 800 eV.

• Is your Chebyshev interpolation quality too low? 𝑁i should be at least 10, preferably 12. 𝑁o should also be at
least 10, preferably 12.

• Is the number of points in the radial Bessel interpolation (hfx_bessel_rad_nptsx) too low? Don’t go below
100000. For larger simulation cells you might want to use a higher value (say, 250000).

Can I do conduction calculations with HFx?

Yes!

Just make sure all NGWF radii are equal for all species and across species and species_cond blocks. You may reuse
the metric matrices between the valence and conduction calculation. Have a lot of CPU power available. It shouldn’t
be too difficult up to 500 atoms, then difficulty ramps up. 1000+ atoms will require considerable resources (≈ 1000+
cores) and patience (weeks). Current record is 1108 atoms (June 2020).

Can I do LR-TDDFT calculations with HFx?

Yes, but this is at an experimental stage at the moment.

3.11. Spherical wave resolution of identity (SWRI), Hartree-Fock exchange (HFx), hybrid
functionals and distributed multipole analysis (DMA)

99



ONETEP Documentation, Release 7.1.8

3.11.8 Further questions?
General questions should be directed to Jacek Dziedzic, J.Dziedzic[-at-]soton.ac.uk.

Questions relating to the 2Dn-1Da metric matrix evaluation scheme or to hybrid LR-TDDFT should be directed at
James C. Womack, J.C.Womack[-at-]bristol.ac.uk.
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3.12.1 Theory
The plane wave approach inherently involves the use of periodic boundary conditions (PBC). In order to model isolated
molecules, the supercell technique was developed, which involves adding large quantities of vacuum to the simualtion
cell in order to separate their periodic images. Although this method is adequate for neutral molecules, charged systems
and systems with significant multipoles require additional considerations. The potential of the monopole and multipole
moments decay in accordance to the power law, where point charges decay with 1

𝑟1 , dipoles with 1
𝑟2 etc.. Using the

supercell method for systems with a net charge or significant dipoles require large volumes of vacuum to eliminate
the electrostatic interactions between the system of the unit cell and its periodic images. However, as traditional plane
wave codes extend across the entire cell, adding large quantities of vacuum is computationally costly. Various dipole
corrections such as the cut-off Coulomb (CC) [Jarvis1997], Continuum Screening Method [Otani2006] and Gaussian
Counter Charge model [Dabo2008] have been developed in order to isolate the electrostatic interactions of the unit cell
from its periodic images.

The cut-off Coulomb (or Coulomb cut-off) approach, as implemented in ONETEP by Nick Hine [Hine2011], achieves
this by only allowing Coulombic interactions within a specified region, thereby emulating the electrostatics of an iso-
lated system with a periodic representation of the charge density [Jarvis1997]. By selecting an appropriate region, one
can eliminate spurious electrostatic interactions between charges in the periodic replicas and the home cell, while also
retaining the correct description of the potential between charges in the isolated system. One can choose to maintain
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periodic Coulombic interactions along specified axes, thereby representing electrostatics in systems with either 1D
(wire), 2D (slab) or 0D (sphere) periodicity.

3D Periodic Coulomb Interaction

In a standard periodic calculation, the electrostatic potential is defined as through the Hartree potential:

𝑉𝐻(r) =

∫︁
𝑠𝑝𝑎𝑐𝑒

𝑛(r′)

|r− r′|
𝑑r′ (3.31)

Where 𝑛(r′) describes the charge density of the system. This can be equivalently represented as:

𝑉𝐻(r) =

∫︁
𝑠𝑝𝑎𝑐𝑒

𝑣(r, r′)𝑛(r′)𝑑r′

Where 𝑣(r) represents the Coulomb interaction, 1
|r−r′| . This is more conveniently calculated in reciprocal space, which

is achieved through a Fourier transformation of the 𝑉𝐻 in accordance with convolution theory:

𝑉𝐻(G) = 𝑣(G)𝑛(G)

In the fully periodic case, the above expressions are taken over all reciprocal space (∞ to−∞), which yields a Coulomb
interaction of:

𝑣(G) =
4𝜋

|G|2

Coulomb Cut-off in 3D

The standard periodic approach takes the integration of the Coulomb interaction over all space, which allows interac-
tion between the periodic images and the original unit cell. In contrast, Coulomb cut-off sets the Coulomb interaction
between charges to zero beyond a specified radius. In the simplest case, one can define this cut-off as a sphere, which
assumes a system without periodicity. By selecting an appropriate cut-off radius, 𝑅𝐶 , one can retain the correct elec-
trostatic interactions of between charges in the unit cell, while eliminating spurious interactions the periodic images:

𝑣3𝐷(r, r′) =

{︃
1

|r−r′| for 𝑅𝐶 < |r− r′|
0 for 𝑅𝐶 > |r− r′|

Performing an analytic Fourier Transformation of 𝑣(r, r′) with modified boundaries yields the following reciprocal
space representation of the Coulomb interaction:

𝑣3𝐷(G) =
4𝜋

G2
(1 − cos(G𝑅𝐶))

Coulomb Cut-off in 1D

Although this approach is satisfactory for systems with no periodicity, additional considerations must be made if pe-
riodicity is required in either 1D (ie. a wire) or in 2D (ie. an infinitely extended plane). In the 1D case, the Coulomb
cut-off is defined as a cylinder, where periodicity is retained in the z-axis and the Coulomb interaction is applied in the
xy-direction. In theory, this redefines the Coulomb interaction as:

𝑣1𝐷(G⊥,G𝑥) =
4𝜋

G2
[1 + G⊥𝑅𝐶𝐽1(G⊥𝑅𝐶)𝐾0(G𝑥𝑅𝐶) −G𝑥𝑅𝐶𝐽0(G⊥𝑅𝐶)𝐾1(G𝑥𝑅𝐶)] (3.32)

Where 𝐽 and 𝐾 are modified Bessel functions, G𝑥, G𝑦 and G𝑧 the reciprocal lattice vectors in 𝑥, 𝑦 and 𝑧 and G⊥ =√︀
G2

𝑥 + G2
𝑧 .

However, a divergence occurs at 𝐺𝑥 = 0, which is handled by re-casting Equation (3.32) into an analytical expression
solved through :

𝑣1𝐷(G⊥,G𝑥 = 0) = −4𝜋

∫︁ 𝑅

0

𝑟𝐽0(G⊥) ln (r)𝑑r
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Coulomb Cut-off in 2D

For systems where periodicity is maintained in 2D, the Coulomb cut-off must only be applied in the out-of-plane
direction, while retaining PBC in the xy-plane. Originally, this was implemented in ONETEP from the formulation of
Rozzi et al. [Rozzi2006], where the Coulomb interaction 𝑣3𝐷(G) is re-cast to the following expression:

𝑣2𝐷(G‖,G𝑧) =
4𝜋

G2

[︂
1 + 𝑒−G‖𝑅𝐶

G𝑧

G‖
sin(G𝑧𝑅𝐶) − 𝑒−G‖𝑅𝐶 cos |G𝑧|𝑅𝐶)

]︂

Where G‖ =
√︁
G2

𝑥 + G2
𝑦 and G𝑧 represent the in-plane and out-of-plane reciprocal space vectors respectively. How-

ever, as described by Sohier et al. [Sohier2017], if 𝑅𝐶 = 𝐿
2 , where L represents the length of the simulation cell, this

expression simplifies to:

𝑣2𝐷(G‖,G𝑧) =
4𝜋

G2

[︂
1 − 𝑒−G‖𝑅𝐶 cos(|G𝑧|𝑅𝐶)

]︂
Where𝐺𝑧 is a multiple of 2𝜋

𝐿 . As with the Coulomb interaction under periodic boundary conditions, this term diverges
at G = 0, and is therefore treated separately and 𝑣2𝐷(G = 0) = 0 as argued by Sohier et al. [Sohier2017].

3.12.2 Performing a Calculation with Coulomb Cut-off
To use Coulomb cut-off, the keyword COULOMB_CUTOFF_TYPE must be inserted, with the input specifying the period-
icity of the system:

• 1D - COULOMB_CUTOFF_TYPE: WIRE

• 2D - COULOMB_CUTOFF_TYPE: SLAB

• 3D - COULOMB_CUTOFF_TYPE: SPHERE

In addition, the length/radius of the cut-off must be specified with either COULOMB_CUTOFF_RADIUS or
COULOMB_CUTOFF_LENGTH:

• 1D & 2D - COULOMB_CUTOFF_LENGTH

• 3D - COULOMB_CUTOFF_RADIUS

As part of the Coulomb cut-off in ONETEP, the electron density 𝑛(r) in the original cell is placed into a larger,
padded cell in which 𝑛(r) = 0. This is determined in a similar way as the original lattice block through a
new block %BLOCK PADDED_LATTICE_CART, which determines the size and dimensions of the larger cell: %BLOCK
PADDED_LATTICE_CART a11 a21 a31 a21 a22 a23 a31 a32 a33 %ENDBLOCK PADDED_LATTICE_CART

This is automatically specified, so adjusting this block is not recommended. The recommended set-ups for calculations
of each dimensionality are summarized in the table below:

Coulomb Cut-off Type Cut-off Length/Radius Cell Dimensions

𝑎𝑝𝑎𝑑11 = 2𝑎𝑐𝑒𝑙𝑙11

Sphere* 𝑅𝐶 =
√

3𝑎𝑐𝑒𝑙𝑙33 𝑎𝑝𝑎𝑑22 = 2𝑎𝑐𝑒𝑙𝑙22

𝑎𝑝𝑎𝑑33 = 2𝑎𝑐𝑒𝑙𝑙33

𝑎𝑝𝑎𝑑11 = 2𝑎𝑐𝑒𝑙𝑙11

Wire** 𝑅𝐶 =
√

2𝑎𝑐𝑒𝑙𝑙33 𝑎𝑝𝑎𝑑22 = 2𝑎𝑐𝑒𝑙𝑙22

𝑎𝑝𝑎𝑑33 = 𝑎𝑐𝑒𝑙𝑙33

𝑎𝑝𝑎𝑑11 = 𝑎𝑐𝑒𝑙𝑙11

Slab*** 𝑅𝐶 = 𝑎33 𝑎𝑝𝑎𝑑22 = 𝑎𝑐𝑒𝑙𝑙22

𝑎𝑝𝑎𝑑33 = 2𝑎𝑐𝑒𝑙𝑙33
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Table: The recommended calculation parameters for each periodicity of the Coulomb cut-off, where 𝑎𝑐𝑒𝑙𝑙𝑖𝑖 and 𝑎𝑝𝑎𝑑𝑖𝑖

represent the diagonal components of the original simulation cell specified in % BLOCK_LATTICE_CART and the padded
cell respectively. Assumed orthogonal cell in all cases.

* Assuming 𝑎𝑐𝑒𝑙𝑙11 = 𝑎𝑐𝑒𝑙𝑙22 = 𝑎𝑐𝑒𝑙𝑙33 .
** Assuming 𝑎𝑐𝑒𝑙𝑙11 = 𝑎𝑐𝑒𝑙𝑙22 . 𝑎33 being the periodic direction.
*** 𝑎33 defined as the non-periodic direction.

These choices of both the padded cell dimension and the cut-off length/radius ensure two conditions are satisfied:

1. Charges within the original unit cell correctly interact with one another.

2. The interaction between charges of the periodic image and the original simulation cell are set to zero.

The first condition is satisfied by setting the cut-off distance equal to or greater than the distance between any two non-
zero charges within the original unit cell. For the 3D case, this is typically satisfied by𝑅𝐶 >

√
3𝐿𝑐𝑒𝑙𝑙, while in 2D and

1D, this is satisfied by 𝑅𝐶 = 𝐿𝑐𝑒𝑙𝑙

2 , where 𝐿𝑐𝑒𝑙𝑙 is the cell dimension in the non-periodic axis. The second condition
requires that the distance between non-zero charges of the simulation cell and the periodic image must be greater than
or equal to the cut-off length. In ONETEP, this is achieved by placing the unit cell inside a larger padded cell, in which
the charge density 𝜌(r) = 0. The second condition is satisfied when the total cell length, 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑐𝑒𝑙𝑙 + 𝐿𝑝𝑎𝑑 ≥
𝑅𝐶 + 𝐿𝑐𝑒𝑙𝑙.

[Jarvis1997] M. R. Jarvis, I. D. White, R. W. Godby, and M. C. Payne, Supercell technique for total-energy calculations
of finite charged and polar systems, Phys. Rev. B, 56, (1997).

[Otani2006] M. Otani, and O. Sugino, First-principles calculations of charged surfaces and interfaces: A plane-wave
nonrepeated slab approach, Phys. Rev. B, 73, (2006).

[Dabo2008] I. Dabo, B. Kozinsky, N. E. Singh-Miller, N. Marzari, Electrostatics in periodic boundary conditions and
real-space corrections, Phys. Rev. B, 77, (2008).

[Hine2011] N. D. M. Hine, J. Dziedzic, P. D. Haynes, and C.-K. Skylaris, Electrostatic interactions in finite systems
treated with periodic boundary conditions: Application to linear-scaling density functional theory, J. Chem. Phys. 135
(2011).

[Rozzi2006] C. A. Rozzi, D. Varsano, A. Marini, E. K. U. Gross, and A. Rubio, Exact Coulomb cutoff technique for
supercell calculations, Phys. Rev. B 73 (2006).

[Sohier2017] T. Sohier, M. Calandra, and F. Mauri, Density functional perturbation theory for gated two-dimensional
heterostructures: Theoretical developments and application to flexural phonons in graphene, Phys. Rev. B 96 (2017).

3.13 Species Dependent Scissor Shifts
Author

Nelson Yeung, University of Warwick

Author
Nicholas Hine, University of Warwick

3.13.1 Scissor Hamiltonian
The scissor hamiltonian allows one to apply species-dependent and subspace-dependent energy-level shifts to the hamil-
tonian, which has the effect of shifting eigenvalues associated with specific layers of the material. One can separately
shift the valence and conduction subspaces associated with each layer. This also affects the total energy, so must be ap-
plied with great care if you are using the total energy for any purpose. The idea is that a band-alignment correction can
be applied to the individual layers of non-covalently-bonded layered materials, though there may well be many other
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applications as well. It would seem “unwise” at best to apply this approach to different regions of the same molecule
or solid which are strongly bonded: results would be unpredictable and likely unphysical. One ideal use would be
to correct the alignment of the band-edges of a layered material heterobilayer so that the appropriate heterostructure
type was realised, for example straddled-gap rather than broken-gap, using shifts chosen by reference to beyond-DFT
accuracy calculations of the individual materials, or from experimental techniques such as ARPES.

In order to apply this shift, we define a scissor Hamiltonian operator as follows:

�̂�scissor = |𝜑𝜂⟩𝐾𝜂𝛿
shifted⟨𝜑𝛿| ,

where 𝐾shifted is the sum of the species-dependent shifted valence and conduction density kernel, which is defined as

𝐾shifted =
∑︁
𝐿

(︀
𝜎𝑣,𝐿𝐾𝐿 + 𝜎𝑐,𝐿(𝑆−1

𝐿 −𝐾𝐿)
)︀
.

The 𝜎𝑣 and 𝜎𝑐 are the shifts for valence and conduction states, respectively, and the sum is over layer 𝐿. The scissor
shifted eigenvalues are simply

𝐻shifted = 𝐻 + 𝑆𝐾shifted𝑆 .

The gradient of the scissor energy with respect to the NGWFs can be calculated using

𝜕𝐸scissor

𝜕𝜑*𝛾(r)
= 𝐾𝛽𝛼

𝑛

𝜕

𝜕𝜑*𝛾(r)
⟨𝜑𝛼|�̂�scissor|𝜑𝛽⟩

= 𝐾𝛽𝛼
𝑛

𝜕

𝜕𝜑*𝛾(r)
⟨𝜑𝛼|𝜑𝜂⟩𝐾𝜂𝛿

shifted⟨𝜑𝛿|𝜑𝛽⟩

= 𝐾𝛽𝛿
shifted𝑆𝛿𝜂𝐾

𝜂𝛼
𝑛

⎛⎝𝜑𝛽 +
∑︁
𝑖𝑗

𝑝𝑖(r)𝑂𝑖𝑗𝑅
𝑗
𝛼

⎞⎠ .

The approach has been reasonably well tested in the context of LNV calculations. As of April 2019 it has not been
validated for EDFT, conduction NGWF optimisation, TDDFT etc, but these would be reasonably expected to work as
well.

3.13.2 Performing a Species Dependent Scissor Calculation
To activate the shift, the species_scissor block must be present. The user must specify (on separate lines) groups
of atom types, with each line finishing with two numbers representing the valence and conduction shifts to be applied
to that group of species.

For example, for a MoS2 / MoSe2 heterobilayer, we might use the following to correct the energies of the individual
layers:

%block species_scissor
Mo1 S -0.5 0.5
Mo2 Se -0.1 0.8
%endblock species_scissor

This would have the effect of opening the gap of the MoS2 layer by 1eV and opening the gap of the MoSe2 layer by 0.9
eV, and shifting the alignment of the valence bands by 0.4 eV.

3.14 Embedded Mean-Field Theory
Author

Robert J. Charlton, Imperial College London
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Author
Joseph C.A. Prentice, Imperial College London

Date
January 2019

Date
Updated by J.C.A. Prentice October 2021

3.14.1 Embedded Mean-Field Theory (EMFT)
Often in simulations of materials we wish to consider the impact of a host environment on a system of interest, such as
chromophores in solvent or doped molecular crystals. While the interesting physics or chemistry may be associated with
the subsystem, the effects of the environment can be significant and warrant description at the quantum level of theory.
However, the cost of applying accurate quantum methods such as hybrid functionals to potentially large environments
can be restricted by the cost of such methods. Quantum embedding [Huang2008], [Gomes2012] methods are intended
to combine an accurate, high-level description of the subsystem of interest (active) with a cheaper, low-level method
for the host environment.

Embedded mean field theory (EMFT) [Fornace2015] is an approach to quantum embedding based on the one-electron
density matrix. To begin, we partition the density matrix into subsystem components,

𝜌 =

(︂
𝜌AA 𝜌AB
𝜌BA 𝜌BB

)︂
, (3.33)

where A is the active region and B is the inactive environment. The total energy can be written as

𝐸[𝜌] = tr[𝜌𝐻0] +𝐺[𝜌],

where 𝐻0 contains the one-electron terms of the Hamiltonian and 𝐺[𝜌] contains all two-electron terms (local, Hartree
and exchange-correlation effects). In embedded mean-field theory (EMFT), the two-electron interaction for the active
subsystem A is constructed at a higher level of theory to the rest of the system,

𝐸EMFT[𝜌] = tr[𝜌𝐻0] +𝐺low[𝜌] +
(︀
𝐺high[𝜌AA] −𝐺low[𝜌AA]

)︀
, (3.34)

where 𝐺low and 𝐺high are the two-electron interaction energies at the lower and higher levels of theory, respectively.
For example, the low level theory could be LDA while the higher level uses a hybrid functional such as B3LYP. We
assume here that the core Hamiltonian 𝐻0 is the same at both levels of theory, though this need not necessarily be the
case. The ground state of the embedded system can thus be obtained by minimising (3.34) with respect to the elements
of the density matrix.

Block orthogonalisation

Normalisation is maintained provided the trace of the density matrix with the overlap matrix satisfies

Tr [𝜌S] = 𝑁.

EMFT partitioning can result in unrealistic charge spillover from the low-level to the high-level region, producing
large negative results for the off-diagonal terms Tr [𝜌ABSBA] and Tr [𝜌BASAB]. One possible remedy is to impose a
block-orthogonalisation (BO) between the subsystem orbitals [Ding2017],

|𝜑B
𝑖 ⟩ =

(︁
1 − 𝑃A

)︁
|𝜑B

𝑖 ⟩,

𝑃A =
∑︁
𝑗,𝑘∈A

|𝜑A
𝑗 ⟩
(︀
SAA)︀-1

𝑗𝑘
⟨𝜑A

𝑘 |.

By construction Tr [𝜌ABSBA] and Tr [𝜌BASAB] are strictly zero and all electrons are associated with the diagonal blocks.
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3.14.2 Implementation in ONETEP
Quantum embedding as implemented in ONETEP is based around EMFT [Prentice2020]. Here we denote the active
system NGWFs as |𝜒A

𝑖 ⟩ and the environment NGWFs as |𝜑B
𝑗 ⟩. The fundamental quantity of interest is the Hamiltonian,

HEMFT =

(︂
Hhigh

AA Hlow
AB

Hlow
BA Hlow

BB

)︂
,

where the high- and low-level Hamiltonian operators are given as

�̂�high =𝑇 + 𝑉local + 𝑉Hartree + 𝑉 high
XC ,

�̂� low =𝑇 + 𝑉local + 𝑉Hartree + 𝑉 low
XC .

The total energy can thus be found by minimising the quantity

𝐸EMFT = min
{𝐾𝛼𝛽},{𝜒𝛼}

Tr
[︀
KHEMFT]︀ ,

with respect to the NGWFs and elements of the density kernel K, using the conventional methods available in ONETEP.
The Hamiltonian is constructed as follows,

1. The total electron density 𝑛(r) is constructed from the full system NGWFs and kernel, from which 𝑉 low
XC (r) is

calculated.

2. The active subsystem density 𝑛AA(r) is constructed using the subsystem terms and the subsystem XC potentials
𝑉 low,A

XC (r) and 𝑉 high,A
XC (r) calculated.

3. Final EMFT potential can be written as

𝑉 high
XC (r) = 𝑉 low

XC (r) +
(︁
𝑉 high,A

XC (r) − 𝑉 low,A
XC (r)

)︁
.

with which we can construct the high-level Hamiltonian.

Although block orthogonalisation is found to work when just the density kernel is being optimised, it does not do so
generally for the optimisation of the NGWFs. Because of this, there is an option to optimise the NGWFs at the lower
level of theory first (in all regions), and then fix them for an optimisation of the kernel under EMFT.

If you would like to use hybrid functionals with embedding, there are two things to bear in mind. Firstly, only hybrid-
in-semi local DFT calculations are currently supported – hybrid-in-hybrid calculations are not possible. Secondly, the
species in the species_swri-[swri name] block must match the species in the active region exactly. Anything else
will give incorrect results. Otherwise, the set-up of the hybrid functional calculation is identical to a normal ONETEP
calculation.

LR-TDDFT calculations can be performed with embedding (TD-EMFT) [Ding2017-2], and this is also implemented
within ONETEP [Prentice2022]. If you would like to perform a TD-EMFT calculation, it may be advisable to restrict
the excitations to the active region, using the species_tddft_kernel block.

It is also possible to place the quantum embedding system within implicit solvent, giving multi-level embedding ca-
pability [Prentice2022]. This should work very similarly to standard implicit solvent calculations, although there are a
couple of additional keywords (see below). The main difference is whether the cavity is constructed using the density
kernel optimised solely at the low level of theory, or optimised using EMFT. This only makes a difference if the active
region is close to the edge of the cavity.

3.14.3 Keywords
• species_ngwf_regions (block): This block defines which species are in which region. Each line of the block

corresponds to a distinct region. The species within each region do not necessarily have to be physically next to
one another. If this block is not defined, it is assumed that there is only one region, containing all the species in
the system.
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• do_fandt (logical): Controls whether a freeze-and-thaw (F+T) optimisation of the NGWFs is performed or not.
This is a cruder form of embedding, where all regions are treated at the same level of theory, but each region’s
NGWFs are optimised in turn, with the others frozen. Default F.

• freeze_switch_steps (integer): How many NGWF CG optimisation steps should be spent on each region
before moving onto the next in a F+T calculation. maxit_ngwf_cg represents the total number of NGWF opti-
misation steps across all regions. A value less than 0 means that all NGWFs are optimised together i.e. no F+T
takes place. Default -1.

• use_emft (logical): Controls whether an EMFT calculation is performed, as described above. Default F.

• active_region (integer): Defines which region is the active region – 1 means the species on the first line in
the species_ngwf_regions block constitute the active region, 2 means the second line, and so on. Default 1.

• active_xc_functional (string): Defines what functional is used as the higher level of theory within EMFT.
Default is the value of xc_functional i.e. no difference between the regions.

• freeze_envir_ngwfs (logical): Controls whether the environment NGWFs should ever be optimised or not.
Default F.

• use_emft_follow (logical): Controls whether the EMFT calculation is only performed after a regular calcula-
tion, so the NGWFs are optimised at the lower level of theory first, before applying EMFT. Default F.

• use_emft_lnv_only (logical): Controls whether only the kernel is optimised within EMFT, with the NGWFs
optimised at the lower level of theory and then fixed. Usually used in conjunction with use_emft_follow.
Default F.

• emft_lnv_steps (integer): Controls the number of LNV kernel optimisation steps to be used in conjunction
with use_emft_lnv_only. Default 10.

• block_orthogonalise (logical): Controls whether the environment NGWFs are orthogonalised with respect
to the active region NGWFs, as described above. Default F.

• parallel_scheme (string): Defines the parallel scheme used for the calculation. See Appendix for more infor-
mation. Default NONE.

• read_sub_denskern (logical): Controls whether only diagonal blocks of the density kernel are read in when
restarting. This is useful for starting an embedding calculation from two separate calculations on the individual
regions, so you only have the diagonal blocks of the density kernel. Default F.

• embed_debug (logical): Turns on verbose printing for debugging of embedding functionalities. Default F.

• is_restart_vac_from_vac (logical): Decides whether the vacuum calculation in an autosolvation implicit
solvent calculation should be restarted from the vacuum_ files or not. Useful for restarting autosolvation calcu-
lations if they time-out or similar. Default F.

• is_emft_cavity (logical): Decides whether the cavity used in implicit solvent calculations is determined using
the low-level density kernel (F), or the EMFT-optimised density kernel (T). Default F.

The most reliable way to run EMFT calculations is to have use_emft, use_emft_follow, use_emft_lnv_only and
block_orthogonalise all set to T. These can be set to F (most sensibly in reverse order i.e. block_orthogonalise
first), but the calculation may become more unstable, depending on the system, the regions chosen and the functionals
chosen.

3.14.4 Example input file
!====================================================!
! Input for calculation with the ONETEP program !
! !
! O2 and H2 form the embedded system to be treated !

(continues on next page)
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(continued from previous page)

! at the higher level of theory, O1 and H1 are the !
! environment treated at the low-level. !
!====================================================!

%block species_ngwf_regions
O2 H2
O1 H1
%endblock species_ngwf_regions

task: SINGLEPOINT
cutoff_energy 1000 eV
write_forces: T
xc_functional: LDA
active_xc_functional: PBE

use_emft: T
use_emft_follow: T
use_emft_lnv_only: T
block_orthogonalise : T
parallel_scheme: HOUSE

%block species_atomic_set
H1 "SOLVE"
O1 "SOLVE"
H2 "SOLVE"
O2 "SOLVE"
%endblock species_atomic_set

%block species
H1 H 1 1 7.0
O1 O 8 4 7.0
H2 H 1 1 7.0
O2 O 8 4 7.0
%endblock species

%block species_pot
H1 "pseudo/hydrogen.recpot"
O1 "pseudo/oxygen.recpot"
H2 "pseudo/hydrogen.recpot"
O2 "pseudo/oxygen.recpot"
%endblock species_pot

%block lattice_cart
30.000000000 0.000000000 0.000000000
0.000000000 30.000000000 0.000000000
0.000000000 0.000000000 30.000000000

%endblock lattice_cart

%block positions_abs
O1 16.203224001 15.100000000 11.536063353
H1 15.100000000 15.100000000 10.100000000
H1 15.100000000 15.100000000 12.991451046

(continues on next page)
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O2 12.600158789 15.100000000 17.306583960
H2 13.051873252 13.656398529 18.308114239
H2 13.051873252 16.543601471 18.308114239
%endblock positions_abs

3.14.5 Interaction with other functionalities
Fully tested

• Energy and forces calculations

• Hybrid-in-semi local DFT

• Restarting calculations

• LR-TDDFT

• Implicit solvent

Should work, not thoroughly tested

• Geometry optimisation

• Finite displacement phonons

• Molecular dynamics

• Conduction NGWF optimisation

• Ensemble DFT

• Kernel DIIS

• QNTO

• NAO

• Cutoff Coulomb

• Spin polarised calculations

• Some properties calculations (eigenstates, Mulliken charges, plotting, DoS)

Not compatible with embedding

• Hubbard calculations

• DMFT

• PAW

• cDFT

• Bandstructure calculations

• DMA

• EDA

• Electronic transport

• Hybrid-in-hybrid DFT

• NEB
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• EELS

• Polarisable embedding

• Transition state searching

• DDEC

Any functionalities missed above are likely to not work with embedding.

3.14.6 Appendix: Parallel strategies with embedding
In a normal ONETEP calculation, atoms are distributed across the available MPI processes according to a ‘parallel
strategy’. This determines how resources such as matrix elements will be spread across the MPI environment in order
to reduce the communication between nodes and maximise the efficiency of the calculation. Details on maximising
parallel efficiency are available via the ONETEP documentation and website.

As part of the embedding infrastructure, each subsystem is given its own parallel strategy. This contains all informa-
tion relating to the distribution of resources across the MPI nodes available to the calculation, which are determined
by the parameter PARALLEL_SCHEME. There are three settings for the distribution of resources during an embedding
calculation:

• NONE: All subsystems are treated completely independently, with atoms distributed across all available processors
as though the other subsystems do not exist. The number of MPI processes cannot be greater than the number
of atoms in the smallest subsystem. For example, if there are 8 processors available then each will hold atoms
and data from all subsystems, though the calculation will fail if any subsystem has less than 8 atoms (or possibly
slightly more if the space-filling curve is in use). This is the default setting for testing but is not recommended
for practical calculations due to the constraint on the number of processors.

• SENATE: Nodes are partitioned evenly between all subsystems. For example, if there are 8 processors and 2
subsystems, then each will be allocated 4 processors, regardless of the number of atoms in each subsystem.
Unlike the NONE setting, there is no upper bound on the number of processors which may be used, so user
discretion is advised.

• HOUSE: Divides the processors proportionally between all subsystems, with a minimum of 1 processor per sub-
system. For example, if we have two subsystems consisting of 15 and 5 atoms each, then with 8 processors each
subsystem will be allocated 6 and 2 nodes respectively. At a minimum all subsystems are granted 1 processor
— if we had two subsystems with 1 and 100 atoms in our 8 processor example, then they will receive 1 and 7
processor respectively. Like SENATE, there is no upper bound on the number of processors that can be allocated
and finding a sensible setting is left to the user.

HOUSE is the recommended setting for running calculations, the others are mainly of use for testing. Since they should
all produce the same results, any significant differences may be a sign of an underlying problem, so comparing them is
a useful consistency check.

[Ding2017-2] F. Ding, T. Tsuchiya, F. R. Manby and T. F. Miller, J. Chem. Theory Comput., 13, 4216–4227, (2017).

[Prentice2020] J. C. A. Prentice, R. J. Charlton, A. A. Mostofi and P. D. Haynes, J. Chem. Theory Comput., 16,
354–365, (2020).

[Prentice2022] J. C. A. Prentice, J. Chem. Theory Comput., 18, 1542-1554 (2022).

[Huang2008] P. Huang and E. M. Carter, Annu. Rev. Phys. Chem., 59, 261–290, (2008).

[Gomes2012] A. S. P. Gomes and C. R. Jacob, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 108, 222–277, (2012).

[Fornace2015] M. E. Fornace, J. Lee, M. Kaito, F. R. Manby, T. F. Miller, J. Chem. Theory Comput., 11, 568–580,
(2015).

[Ding2017] F. Ding, F. R. Manby and T. F. Miller, J. Chem. Theory Comput., 13, 1605–1615, (2017).
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DFT+𝑈 is fully and self-consistently implemented in ONETEP, together with a number of advanced ancillary function-
alities. The method is linear-scaling with respect to system size, exhibiting no systematic tendency to slow convergence
to the ground-state. DFT+𝑈 in its conventional fixed-projector form introduces only a small increase in computational
pre-factor with respect to the underlying exchange-correlation functional [O-Regan2012].

4.1.1 A very short introduction to DFT+𝑈
DFT+𝑈 [Anisimov1991], [Anisimov1997], [Dudarev1998], also known as LDA+𝑈 or LSDA+𝑈 , is a method used to
improve the description of so-called strongly correlated materials offered by DFT within conventional approximations
for exchange-correlation (XC) such as the LSDA and 𝜎-GGA, quantitatively and even qualitatively. These functionals,
based on the locally-evaluated density and its gradients, can sometimes fail to reproduce the physics associated with
localised orbitals of 3𝑑 and 4𝑓 character characteristic of conventionally-classed strongly correlated materials, a cate-
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gory consisting of not only first-row transition metals and their oxides, but also lanthanoid oxide materials, and other
materials such as certain magnetic semiconductors and organometallic molecules.

Typically, the LDA and its extensions have the tendency to favour high-spin ground-states and to underestimate local
magnetic moments and the band gap in cases where it is related to electron localisation, e.g., in charge-transfer or Mott
insulators. These failures stem from the inability of the approximate xc functionals to satisfy the flat-plane condition,
which combines two constraints that the exact functional must meet: piecewise linearity with respect to electron number
and the spin constancy constraint [Aron_J.Cohen2012]

Put simply, if the system under study comprises open 3𝑑 or 4𝑓 sub-shells, then there is a good chance that the LDA
will find a minimum energy configuration by partly occupying them, leading to an underestimation of the insulating
gap and any associated magnetic order.

In DFT+U, the idea is to describe the strongly correlated electronic states using the Hubbard model by projecting the
Kohn-Sham orbitals onto a localised basis, while the rest of the valence electrons are treated at the standard DFT level.

The general form for the total energy in DFT+𝑈 is given by:

𝐸DFT+U[𝜌(𝑟)] = 𝐸DFT[𝜌(𝑟)] + 𝐸Hub [{𝑛𝑖}] − 𝐸dc [{𝑛𝑖}]

In the above𝐸DFT[𝜌(𝑟)] is the energy at the standard DFT level,𝐸Hub [{𝑛𝑖}] is the Hubbard correction and the last term
𝐸𝑑𝑐 [{𝑛𝑖}] is a double-counting correction for that contribution already included in the LDA term.

The DFT+𝑈 correction term is usually thought of as an explicit mean-field treatment of the exchange-correlation energy
contributed by the correlated sites (subspaces projected out with functions of 3𝑑 and or 4𝑓 character). There are many
variants of the DFT+𝑈 method, the flavour implemented in ONETEP is the basis-set independent, rotationally invariant
quadratic penalty functional of Ref [Cococcioni2005], defined by the additive energy correction.

𝐸DFT+U

[︁
𝑛(𝐼)(𝜎)

]︁
=
∑︁
𝐼𝜎

𝑈 (𝐼)

2
Tr
[︁
n(I)(𝜎)

(︁
1 − n(I)(𝜎)

)︁]︁
.

Here, 𝑈 is an estimate of the scalar screened density-density Coulomb repulsion between localised orbitals. The
occupancy matrix of the correlated atomic site 𝐼 , for spin channel 𝜎, is defined, in the case of orthonormal projector
functions {|𝜙(𝐼)

𝑚 ⟩}, and density-matrix 𝜌(𝜎), by

𝑛
(𝐼)(𝜎)
𝑚𝑚′ = ⟨𝜙(𝐼)

𝑚 |𝜌(𝜎)|𝜙(𝐼)
𝑚′ ⟩.

The DFT+𝑈 method forces the on-site occupancy matrix to be idempotent. This means that the DFT+𝑈 method
penalises non-integer occupancy of these orbitals, tending to fill states with occupancy greater than 0.5 or occupancy
less than 0.5, as can be seen from the expression for the DFT+𝑈 potential.

𝑉
(𝜎)

DFT+U =
∑︁
𝐼

𝑈 (𝐼)|𝜙(𝐼)
𝑚 ⟩

(︂
1

2
𝛿𝑚𝑚′ − 𝑛

(𝐼)(𝜎)
𝑚𝑚′

)︂
⟨𝜙(𝐼)

𝑚′ |.

The DFT+𝑈 term may be considered as a correction which cancels the contribution to the energy arising due to the
spurious self-interaction of a partially occupied orbital [Cococcioni2005]. In this case, the𝑈 parameter is the curvature
of the total energy with respect to the occupancy of the correlated manifold - which should be a piece-wise linear curve
were Janak’s theorem satisfied [Janak1978].

The 𝑈 parameter can be computed empirically or from linear-response theory (among other methods such as con-
strained DFT) according to the prescription given in Refs. [Cococcioni2005], [Kulik2006].

DFT+𝑈+𝐽

A corrective term to include 𝐽 for anti-parallel spin is described in Ref. [Himmetoglu2011] and is given by

𝐸𝐽 [𝑛𝜎] =
∑︁
𝐼

𝐽𝐼

2
Tr[𝑛𝐼𝜎𝑛𝐼−𝜎]

Inclusion of this term leads to the so called DFT+𝑈+𝐽 method, which is fully implemented in ONETEP and can be
activated by assigning a value to the 𝐽 term.
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4.1.2 Computing 𝑈 and 𝐽 from linear-response
The basic idea is to compare the response of the system to a perturbation in the DFT and in the DFT+𝑈 frameworks. We
start by defining the response function 𝜒, which describes how the occupation of localised orbitals changes with respect
to a shift in the potential acting on these orbitals: The linear response method determines the Hubbard 𝑈 parameter by
comparing the response of the system to a perturbation in standard DFT and DFT+𝑈 frameworks.

We define the response function 𝜒 as:

𝜒 =
𝑑𝑛𝐼𝜎

𝑑𝛼

where 𝑛 is the occupation matrix of the localised orbitals and 𝛼 is a potential shift applied to these orbitals.

We compute two response functions:

• 𝜒0: the bare Kohn-Sham (KS) response (without 𝑈 )

• 𝜒: the interacting response (with 𝑈 )

These are related by:

𝑈 = 𝜒−1 − 𝜒−1
0

which allow us to compute 𝑈 .

In practice, we compute 𝜒0 and 𝜒 by applying a small perturbation 𝛼 to the system:

𝜒0 ≈ ∆𝑛

∆𝛼
(computed without U)

𝜒 ≈ ∆𝑛

∆𝛼
(computed with a trial U)

The perturbation is applied by shifting the potential of the localised orbitals:

𝑉 𝑝
ext = 𝑉ext + 𝛼

∑︁
𝑚,𝑚′

|𝜙(𝐼)
𝑚′ ⟩⟨𝜙(𝐼)

𝑚 |

We then iterate until self-consistency is achieved.

This is done in a supercell as the perturbation should not interact with its periodic images.

This is the conventional linear response but it poses practical problems: The response 𝜒0 is usually computed via the
first iteration of the Kohn-Sham equations during a self-consistent field (SCF) calculation; that is, the response is to be
measured following the initial charge redistribution introduced by the perturbation but before the Kohn-Sham potential
is updated. This approach is impractical to implement in codes that use a direct-minimization procedure of the total
energy with respect to the density, Kohn-Sham orbitals, or density matrix.

Another approach to compute 𝑈 and 𝐽 is known as minimum tracking method [Linscott2018].

Minimum Tracking Method

The minimum tracking method is based on a reformulation of the response matrices based on the ground state density
of the perturbed system. We can identify the interacting and noninteracting response matrices as:

𝜒𝐼𝐽 =
𝑑𝑛𝐼

𝑑𝑣𝐽ext
,

(𝜒0)𝐼𝐽 =

[︃
𝑑𝑛

𝑑𝑣KS

(︂
𝑑𝑣KS

𝑑𝑣ext

)︂−1
]︃
𝐼𝐽
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This allows us to work around the practical issues from the conventional linear response. This approach can also be
extended to include the 𝐽 exchange term (The response matrices now become rank-four tensors [Linscott2018]). In
practice this is done by modifying the perturbation by including an additional term (spin-splitting):

𝑉 𝑝
ext = 𝑉ext + 𝛽

∑︁
𝑚,𝑚′

|𝜙(𝐼↑)
𝑚′ ⟩⟨𝜙(𝐼↑)

𝑚 | − |𝜙(𝐼↓)
𝑚′ ⟩⟨𝜙(𝐼↓)

𝑚 |

4.1.3 Using NGWFs and projector self-consistency
Any reasonable set of localised atomic-like functions may, in principle, be used for the projectors defining the correlated
subspaces in DFT+𝑈 ; the choice is somewhat arbitrary and the description “atomic orbitals” does not uniquely define
them. One possible approach is to use Wannier functions for the Kohn-Sham orbitals, so that the correlated subspaces
are proper subspaces of the Kohn-Sham Hilbert space. Indeed, there is numerical evidence to suggest that Maximally
Localised Wannier Functions (MLWFs) [Marzari1997], [Souza2001], in particular, provide a basis that maximises a
particular measure of the on-site Coulomb repulsion [Miyake2008], and MLWFs are in common use as a minimal basis
with which to construct tight-binding models from first-principles.

In ONETEP, a set of variationally-optimised nonorthogonal generalised Wannier functions (NGWFs) are generated
as a by-product of total-energy minimisation. NGWFs exhibit some similar properties to MLWFs and other flavours
of localised Wannier functions, and, for example, can be used to calculate finite-difference response properties in
a similar way [O-Regan2012-2]. As they are conveniently available in ONETEP, we have made it possible to re-
use the NGWFs from the end of a ground-state calculation as a set of Hubbard projectors with which to define the
DFT+𝑈 correction. For this, it was necessary to develop a tensorially-consistent formulation of DFT+𝑈 in order to
accommodate nonorthogonal projector functions [O-Regan2011]; projector nonorthogonality for a given subspace is
automatically compensated for.

In order to ensure that NGWFs with appropriate symmetry are chosen as Hubbard projectors for a given atom, those
𝑛 NGWFs |𝜑𝛼⟩ that maximise

∑︀𝑛
𝑚,𝛼⟨𝜙𝑚|𝜑𝛼⟩⟨𝜑𝛼|𝜙𝑚⟩, for a given set of 𝑛 hydrogenic orbitals |𝜙𝑚⟩, defined in the

hubbard block, are selected for the task.

The keyword hubbard_max_iter, (defaulting to 0), sets the task to HUBBARDSCF, which performs a self-consistency
cycle over the Hubbard projectors, demonstrated in Refs. [O-Regan2010], [O-Regan2011].

The density from one minimisation is re-used at the beginning of the next, and setting hubbard_max_iter to 2 one
can carry out a DFT+𝑈 calculation using the LDA NGWFs as projectors.

The keywords hubbard_energy_tol, hubbard_conv_win, and hubbard_proj_mixing are used to manage
the Hubbard projector self-consistency cycle. For convergence, the ground state energy must deviate less than
hubbard_energy_tol (defaulting to 10−8 Ha) from one HUBBARDSCF iteration to the next, over hubbard_conv_win
(defaulting to 2) iterations. A fraction hubbard_proj_mixing (defaulting to 0.0) of the previous Hubbard projectors
may be mixed with the new ones in order to accelerate the procedure, although this has never been found to be necessary.
Setting hubbard_proj_mixing to a negative value causes the projectors to be read in from a .tightbox_hub_projs
file, for restarting a HUBBARDSCF calculation or for a variety of post-processing tasks.

4.1.4 How to activate DFT+𝑈 in ONETEP
In order to activate the DFT+𝑈 functionality, the hubbard block is added to the input file. For example, in the case
of a system containing iron and cerium atoms incorrectly described by the exchange-correlation functional, which we
suspect could benefit from the DFT+𝑈 correction to improve the description of localisation, we might use the hubbard
block:

%block hubbard
Fe1 2 4.0 0.0 -10.0 0.00 1.0
Fe2 2 4.0 0.0 -10.0 0.00 -1.0
Ce1 3 6.0 0.0 -10.0 0.50 0.0

%endblock hubbard
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The columns of the hubbard block are described as follows:

1. Species Label
The species to apply the DFT+𝑈 correction to. In this example Fe1, Fe2 and Ce1.

2. Angular Momentum: 𝑙
The angular momentum of the projectors which the Hubbard correction is applied to. In this example 𝑙 = 2
for Fe1 and Fe2 and 𝑙 = 3 for Ce1. Conventionally, the radial quantum number 𝑟 = 𝑙 + 1 is used to generate
atom-centred atomic projectors, so that 𝑙 = 2 gives 3𝑑 orbitals, 𝑙 = 3 gives 4𝑓 orbitals etc.

(please get in contact if you need to use a 𝑟 ̸= 𝑙 + 1 combination, or multiple sub-shells per atom).

3. Hubbard 𝑈 value
The value of the Hubbard 𝑈 for this sub-shell, in electron-volts.

4. Hund’s exchange 𝐽 value
The value of the Hund’s exchange 𝐽 for this sub-shell, in electron-volts. The rotationally invariant exchange
corrective term described in detail in Ref. [Himmetoglu2011] (The so called DFT+𝑈+𝐽) is fully implemented
in ONETEP (including forces etc), and activated for any 𝐽 ̸= 0.

5. Effective Charge Z and Projectors type
• Case 1: Z < 0 (Default)

A subset of the orbitals generated by solving the atomic problem subject to the pseudopotential for
the species in question is chosen (in which case the projectors form a subset of the initial guesses
for the ONETEP NGWFs); here the magnitude of the negative Z makes no difference.

• Case 2: Z > 0

The projectors are generated in the form of solutions to the hydrogenic Schrödinger equation.
In this case Z is the effective charge divided by the ratio of effective masses used to generate
projectors. A good guess for this number might be the Clementi-Raimondi effective charge, tab-
ulated in Refs. [Clementi1963], [Clementi1967], and the choice of radial profile does matter
[O-Regan2010].

In both cases, the projectors are effectively renormalised within an atom-centred sphere with the same radius as
the NGWFs on that atom.

6. The 𝛼 prefactor
An additional potential acting on the subspace in question, the prefactor𝛼 is here entered in electron-volts. This is
needed, for example, in order to locally vary the potential in order to determine the value of𝑈 which is consistent
with the screened response in the system with linear-response theory [Cococcioni2005], [Kulik2006], or to break
a spatial symmetry, such as in a mixed-valence system. In the example given, we are additionally penalising the
occupancy on cerium 4𝑓 atomic orbitals.

7. The spin-splitting factor
The spin-splitting factor, in electron-volts, which is deducted from the 𝛼 factor for the spin-up channel and added
to 𝛼 for the spin-down channel. In the example shown here we’re promoting spin-up magnetisation for iron
atoms Fe1, and spin-down for Fe2. This can be very useful for appropriately breaking magnetic symmetries in
antiferromagnetic solids or open-shell singlet molecules, or for estimating the magnetic susceptibility or exchange
coupling.

N.B. Users may find the DFT+𝑈 functionality useful in cases of systems even when the DFT+𝑈 correction is not needed
(setting the all 𝑈 parameters to zero does not disable the functionality). The implementation offers a very inexpensive
method for carrying out carefully-defined atom-centred atomic population analysis, or breaking symmetries in spin or
charge ordered systems.
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4.1.5 DFT+𝑈 keywords

Table 4.1: DFT+𝑈 keywords

Keyword Type Default Description
HUBBARDSCF Task —

Activate a
projector-self-consistent
DFT+𝑈 calculation.

HUBBARDSCF_ON_THE_FLY Logical False
Activate a non-variational
on-the-fly form of
projector self-consistency
in DFT+𝑈
or cDFT, in which the
projectors are updated
whenever the NGWFs are.
task: HUBBARDSCF is then
not needed.

HUBBARD_CONV_WIN Integer 2
The minimum number of
Hubbard projector update
steps satisfying the
incremental energy
tolerance
HUBBARD_ENERGY_TOL
required
for convergence in task :
HUBBARDSCF.

HUBBARD_ENERGY_TOL Physical 1.0E-8 Ha
The maximum
incremental energy
change between
Hubbard projector update
steps allowed for
convergence in task :
HUBBARDSCF.

HUBBARD_FUNCTIONAL Integer 1
The form of DFT+𝑈
energy term used.
Contact developers if you
need to try something
beyond the default.

continues on next page
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Table 4.1 – continued from previous page
Keyword Type Default Description
HUBBARD_MAX_ITER Integer 10

The maximum allowed
number of Hubbard
projector
update steps taken in a
projector
self-consistent DFT+𝑈 or
cDFT
calculation in task:
HUBBARDSCF

HUBBARD_NGWF_SPIN_THRESHOLDPhysical 2.0E-5 Ha
The incremental change
in energy, in
total-energy
minimisation, at which
any
spin-splitting (Zeeman)
type term in DFT+U is
switched off, and the
minimisation history
reset. Useful for breaking
open-shell,
antiferromagnetic, or
charge-density
wave symmetries.

HUBBARD_PROJ_MIXING Real 0.0
The fraction of previous
Hubbard projector to
mix with new for
projector self-consistent
DFT+𝑈 or cDFT in task :
HUBBARDSCF.
Not found to be necessary.

HUBBARD_READ_PROJECTORSLogical False
Read Hubbard projectors
from tightbox_hub_projs
file in restart calculations
involving
DFT+𝑈 .

continues on next page
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Table 4.1 – continued from previous page
Keyword Type Default Description
HUBBARD_TENSOR_CORR Integer 1

The form of correction
used to correct for any
nonorthogonality between
Hubbard projectors.
Contact developers if you
need to try something
other than the default
“tensorial” correction.

4.1.6 Tutorials
Example on the use of DFT+𝑈 for Hematite, a strongly correlated system.

• https://tutorials.onetep.org/T9_hematite_dftu.html

Example on how to compute 𝑈 and 𝐽 from linear response.
• To be added

4.1.7 Compatibility
The DFT+𝑈 functionality is fully compatible with almost all other parts of the ONETEP code, such as listed below,
since it simply involves an additional term in the Hamiltonian and ionic forces. Please get in touch first if you would
like to use a more exotic combination of these functionalities:

1. Total-energy minimisation and ionic forces.

2. Geometry optimisation, molecular dynamics and phonon calculations.

3. All other functionals including hybrids and Van der Waals functionals.

4. Implicit solvation.

5. The PAW formalism and ultrasoft pseudopotentials.

6. Constrained DFT.

7. Local density of states (including a correlated subspace decomposition).

8. Natural bond orbital calculations.

9. Conduction-band optimisation and Fermi’s Golden Rule spectra.

10. Calculations of changes in electric polarisation.

11. Time-dependent DFT.

12. Electronic transmission calculations.

The extension of the DFT+𝑈 implementation to cluster Dynamical mean-field theory has also been implemented in
ONETEP; for an example of its capabilities see Ref. [Weber2012].
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4.2 Constrained Density Functional Theory (cDFT)
Author

Gilberto Teobaldi, University of Liverpool (g.teobaldi@liv.ac.uk)

Date
November 2013

4.2.1 cDFT input check-list
This is a short check-list meant to help the setting up of a constrained-DFT (cDFT) simulation. ONETEP implements
some rather extensive check of the input (as specified in .dat file). In spite of this, users may be still capable of creating
erroneous inputs which I could not think of. If you experience disaster (commutators larger than 1.E-3, NWGFs- and
cDFT-optimisation stuck at the same value of the gradient for many iterations, or NaN (Not A Number) and ‘***’
outputs from ONETEP), please do get in touch.

Can I start by running a cDFT geometry-optimisation and/or Molecular Dynamics straightaway?

Currently, this is not possible. ONETEP will not allow you to run a geometry-optimisation/molecular dynamics simu-
lation unless a .cdft file (containing the cDFT-potentials, Uq/s) is present. This is meant to force you to first make sure
that your cDFT-settings let you obtain a good convergence in a single-point calculation for the system and constrained
solution you are interested in.

What projectors am I telling ONETEP to use?

Is cdft_read_projector=F (this is the default) and cdft_multi_proj=F (this is the default) in your input?

If so, you will be using as cDFT-projectors the orbitals, of angular momentum L-projectors, of a hydrogenic atom of
atomic number Z-projector, provided Z-projector is positive in the %block constrained_dft (Z>0). Conversely, if you
have entered a negative Z-projector value in the %block constrained_dft (Z<0), you will be using the numerical orbital
(of angular momentum L-projectors) for the given cDFT-atom as cDFT-projectors.

Is cdft_multi_proj=T (this is NOT the default) in your input?

If so, you will be using as cDFT-projectors the numerical orbitals, obtained from the pseudo-atom solver. You will be
using as many cDFT-projectors as NGWFs for the given cDFT-site. Thus, to know the number and angular momentum
of your cDFT-projectors, you need to refer to the specific settings of the cDFT-site in the %block species_atom_set and
the relevant output in the standard .out file.

Is cdft_read_projector=T in your input?

If so, you will use the projectors stored in the .tightbox_hub_projs file (or experience a crash if this file is not present).
Mind that the file will contain different classes of projectors (hydrogenic orbitals, numerical orbitals, self-consistent
projectors) depending on the settings you used for the cDFT-run which generated the .tightbox_hub_projs file. This
means that, unless one wants to experience a crash, the projectors in the .tightbox_hub_projs file should have been
generated with the same entries for Z-projector and L-projector in %block constrained_dft OR cdft_multi_proj and
%block species_atom_set as in the current calculation.

Is this the first single-point cDFT submission or do I want to restart a single-point calculation?

For submission from scratch the user can chose between starting the cDFT-run from previously obtained DFT-NGWFs
and Density Kernel (DKN), by setting (read_denskern=T and read_tightbox_ngwfs=T), or not (read_denskern=F and
read_tightbox_ngwfs=F).

To restart a cDFT-single point run (from the latest Uq/s-potentials) or to run cDFT-geometry optimisations/Molecular
Dynamics it is necessary to activate cdft_continuation=T. Mind that if, instead of hydrogenic or numerical orbitals as
cDFT-projectors (see above) one wants to use/keep using pre-optimised projectors (stored in .tightbox_hub_projs file)
it is necessary to activate also cdft_read_projector=T in a restart.
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Are the columns of the %block constrained_dft requesting the right targets for the given cDFT-
flavour?

MIND that, as explained in the description of the keywords, different columns of the %block constrained_dft are used
depending on the selected cDFT-modes (cdft_atom_charge, cdft_atom_spin, cdft_group_charge/spin_acceptor/donor,
cdft_group_charge/spin_diff). Are you requesting the right targets in terms of atomic-population, group-populations,
atomic magnetic-moments and group magnetic-moments?

Mind also that the cdft_group_charge/spin_acceptor/donor, cdft_group_charge/spin_diff cDFT-modes require that tar-
geted population, magnetic-moment and differences are entered explicitly with the corresponding _TARGET keyword.
If you have forgotten entering the relevant _TARGET keyword in your input, the simulation will stop and ONETEP
will tell you about it.

Have I set CDFT_GROUP_CHARGE_UP/DOWN_ONLY=T?

Remember that, for CDFT_GROUP_CHARGE_UP/DOWN_ONLY=T, only the corresponding spin-channel will be
constrained in cdft_group_charge_acceptor/donor and cdft_group_charge_diff runs. Accordingly, you should target
populations for one-spin channel only (not for the UP+DOWN channels).

Is the sign of Uq/s correct for the group_charge/spin_acceptor/donor/diff run?

Remember that atoms in acceptor- and donor-group are identified by mean of the sign of the Uq/s in the %block con-
strained_dft. Thus, acceptor-group atoms need to be assigned negative (e-attractive) Uq/s (U:sub:`q/s`<0), whereas
donor-group atoms need to be assigned positive (e-repulsive) Uq/s (U:sub:`q/s`>0).

Are my constraints compatible with the spin (=NUP-NDOWN) keyword in the input (.dat) file?

Remember that ONETEP optimises the Density Kernel keeping the number of UP (NUP) and DOWN (NDOWN) elec-
trons fixed. As a result, the net magnetization of the system (NUP-NDOWN) is also fixed. Have you introduced any
incongruence between the spin=0,1,2,etc keyword and the cDFT-ones in your input? If your targeted cDFT-solution
results in a high-value (i.e. > 0 𝜇B) magnetization of the total system, the spin keyword should reflect it.

What values of min/maxit_lnv, maxit_ngwf_cg and maxit_cdft_u_cg should I use?

Based on the tests run so far, and considering that the cDFT-potentials (Uq/s) are iteratively optimised at each (1:sup:st)
step of the NGWFs-optimisation line-search, the following choices seem to be reasonable:

maxit_palser_mano : -1
kerfix : 2
maxit_pen : 0
minit_lnv : 5
maxit_lnv : 10
maxit_ngwf_cg : 60
lnv_check_trial_steps : T
lnv_threshold_orig : 1.0e-10
maxit_cdft_u_cg : 5

Increasing maxit_cdft_u_cg above 5 is hardly going to accelerate the convergence of the cDFT-run (the NGWFs will
change at the following step of NGWFs-optimisation), decreasing minit_lnv below 5 might be risky.

To what value should I initialise the cDFT-potentials (Uq/s)?

In the current implementation, unless cdft_guru=T, in which case the Uq/s entered in the %block constrained_dft will
be used, the absolute value of the Uq/s cDFT-potentials are internally initialised to 1 eV (their original sign is, of course,
maintained). For spin-excitation |Us|=1eV may be too large, and initialising the |Us| with 0.1-0.3 eV may accelerate
convergence (this has been tested only on triplet excitations in benzene dimers).
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What is the difference between a cdft_atom_charge run and a cdft_group_charge_acceptor/donor
one with one-atom group?

Whereas the cdft_atom_charge=T mode allows independent (i.e. potentially different) constraining potentials to
be applied to the UP and DOWN spin-channels, for one-atom cdft_group_charge_acceptor/donor=T the same Uq
will be applied to both the UP and DOWN spin-channel. Activation of cdft_group_charge_up/down_only=T in
cdft_group_acceptor/donor modes allows to optimise Uq for only a spin-channel, leaving the other spin-channel un-
constrained.

Have I chosen a meaningful cdft_cg_max for the cDFT-mode I wish to use?

For cDFT-runs with only one cDFT-group in the system (cdft_group_charge/spin_acceptor/donor modes) and
group_charge/spin_diff runs, only one cDFT-potential (Uq/s) will be optimised in the cDFT-loop. Accordingly, for
these cases it is recommended to perform the cDFT-optimisation via a steepest descendent algorithm (cdft_cg_max=1).

How do I obtain the population of the cDFT-sites for a standard DFT-run?

Performing a single-point (task=singlepoint) fixed-Uq/s (maxit_cdft_u_cg=0) cDFT-run using very small (e.g. 1.E-60)
Uq/s-potentials in the %block constrained_dft and setting output_detail=VERBOSE will result in the cDFT-population
of all the cDFT-sites being printed in the standard output (.out) file. To obtain atom-specific (instead of atomic_species-
specific) information on the population of the cDFT-sites, it is necessary to set CDFT_PRINT_ALL_OCC=T.

Mind. The population of a given cDFT-site depends critically on the projector used. Make sure you decide your
cDFT-targets from the DFT-populations obtained with the same set of projectors!

How do I optimise self-consistently the projectors for a given geometry?

In analogy with DFT+U simulations, self-consistent optimisation of the cDFT-projectors (for a fixed geometry) is
activated by setting task=HUBBARDSCF in the .dat file. It is recommended to start the task=HUBBARDSCF run from
pre-optimised PAO-cDFT projectors (Z<0 in %block constrained_dft), cDFT-potentials (Uq/s), NGWFs and DKN. This
is accomplished, regardless of the keywords specific to the chosen cDFT-flavour, by making sure the input file (.dat)
contains:

task : HUBBARDSCF
hubbard_max_iter : 40 # perform 40 Hubbard-SCF iterations
read_denskern : T
read_tightbox_ngwfs : T
cdft_read_projectors : T
cdft_continuation : T

The percentage of the latest-optimised cDFT-NGWFs to be used as new cDFT-projectors is controlled by the hub-
bard_proj_mixing keyword [0 < |hubbard_proj_mixing| < 1], with hubbard_proj_mixing=1 meaning that the latest
optimised-NGWFs are used entirely as new cDFT-projectors.

Mind. Provided cdft_read_projector=T, the cDFT-projectors in the .tightbox_hub_projs file are used (entirely) as new
projector during the 1st HUBBARDSCF iteration.

Is self-consistent optimisation of the cDFT-projectors at the DFT-geometry a good idea?

From the tests so far, this is not a good idea. For tightly constrained systems (for instance an hypothetical N(+)=N(-)

excitation) a cDFT task=HUBBARDSCF run at the DFT-optimised geometry may result in very slow convergence.
The recommended procedure is to first optimise the cDFT-geometry using numerical orbitals (PAO) as projectors (Z-
projector <0 in %block constrained_dft) and then optimise the cDFT-projectors at the PAO-cDFT optimised geometry.
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4.2.2 cDFT Keywords
Intermediate Keywords

CDFT_ATOM_CHARGE
Syntax: CDFT_ATOM_CHARGE [Logical]

Description: Activate atom charge-constrained-DFT mode. This mode is incompatible with any other cDFT-mode.

Default: False

Example: CDFT_ATOM_CHARGE T

CDFT_ATOM_SPIN
Syntax: CDFT_ATOM_SPIN [Logical]

Description: Activate atom magnetic-moment-constrained-DFT mode. This mode is incompatible with any other
cDFT-mode.

Default: False

Example: CDFT_ATOM_SPIN T

CDFT_CG_MAX
Syntax: CDFT_CG_MAX [Real]

Description: Specifies the maximum number of constraining potential (Uq/s) conjugate gradient iterations between
resets.

Default: Number of independent Uq/s for cdft_guru=F

Example: CDFT_CG_MAX 1 #Perform steepest descents optimisation

CDFT_CG_MAX_STEP
Syntax: CDFT_CG_MAX_STEP [Real]

Description: Maximum length of trial step for the constraining potential (Uq/s) optimisation line search.

Default: 50.0

Example: CDFT_CG_MAX_STEP 10.0

CDFT_CG_THRESHOLD
Syntax: CDFT_CG_THRESHOLD [Real]

Description: Specifies the convergence threshold for the RMS gradient of the constraining potentials (Uq/s).

Default: 1.0E-3

Example: CDFT_CG_THRESHOLD 0.01

CDFT_CG_TYPE
Syntax: CDFT_CG_TYPE [Text]

Description: Specifies the variant of the conjugate gradients algorithm used for the optimization of the constraining
potentials (Uq/s), currently either NGWF_FLETCHER for Fletcher-Reeves or NGWF_POLAK for Polak-Ribiere.

Default: NGWF_FLETCHER

Example: CDFT_CG_TYPE NGWF_POLAK

CDFT_CHARGE_ACCEPTOR_TARGET
Syntax: CDFT_CHARGE_ACCEPTOR_TARGET [Real]
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Description: Targeted acceptor-group electron population for acceptor-group charge-constrained-DFT mode
[CDFT_GROUP_CHARGE_ACCEPTOR=T].

Default: 0.

Example: CDFT_CHARGE_ACCEPTOR_TARGET 17 #Constrain Nup+Ndown=17 e in subspace

CDFT_CHARGE_DONOR_TARGET
Syntax: CDFT_CHARGE_DONOR_TARGET [Real]

Description: Targeted donor-group electron population for donor-group charge-constrained-DFT mode
[CDFT_GROUP_CHARGE_DONOR=T].

Default: 0.

Example: CDFT_CHARGE_DONOR_TARGET 17 #Constrain Nup+Ndown=17 e in subspace

CDFT_CONTINUATION
Syntax: CDFT_CONTINUATION [Logical]

Description: Continue a constraining potential (Uq/s) optimisation from a previous run using the .cdft file
with the latest cDFT-potentials. CDFT_CONTINUATION=T allows also to perform single-point cDFT runs
(MAXIT_CDFT_U_CG=0) reading atom-specific constraining potentials from .cdft file (instead of species-specific
ones from the CONSTRAINED_DFT block). For cdft_continuation=T, the constraining potentials (Uq/s) are read
from the .cdft file no matter the setting of cdft_guru.

Default: False

Example: CDFT_CONTINUATION T

CDFT_GROUP_CHARGE_ACCEPTOR
Syntax: CDFT_GROUP_CHARGE_ACCEPTOR [Logical]

Description: Activate acceptor-group charge-constrained-DFT mode. This mode is compatible with
CDFT_GROUP_CHARGE_DONOR and CDFT_GROUP_SPIN_ACCEPTOR/DONOR cDFT-modes, and in-
compatible with CDFT_ATOM_CHARGE/SPIN and CDFT_GROUP_CHARGE/SPIN_DIFF cDFT modes.

Default: False

Example: CDFT_GROUP_CHARGE_ACCEPTOR T

CDFT_GROUP_CHARGE_DIFF
Syntax: CDFT_GROUP_CHARGE_DIFF [Logical]

Description: Activate group charge-difference constrained-DFT mode. This mode is compati-
ble with CDFT_GROUP_SPIN_DIFF cDFT mode only. Thus, it is incompatible with any other
CDFT_ATOM_CHARGE/SPIN and CDFT_GROUP_CHARGE/SPIN_ACCEPTOR/DONOR cDFT modes.

Default: False

Example: CDFT_GROUP_CHARGE_DIFF T

CDFT_GROUP_CHARGE_DIFF_TARGET
Syntax: CDFT_CHARGE_DIFF_TARGET [Real]

Description: Targeted electron population difference between acceptor and donor group for -group charge-difference
constrained-DFT mode [CDFT_GROUP_CHARGE_DIFF=T].

Default: 0.

Example: CDFT_CHARGE_ACCEPTOR_TARGET 2

#Constrain [Nup+Ndown]_ACC - [Nup+Ndown]_DON to 2 e.
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CDFT_GROUP_CHARGE_DONOR
Syntax: CDFT_GROUP_CHARGE_DONOR [Logical]

Description: Activate donor-group charge-constrained-DFT mode. This mode is compatible with
CDFT_GROUP_CHARGE_ACCEPTOR and CDFT_GROUP_SPIN_ACCEPTOR/DONOR cDFT-modes, and
incompatible with CDFT_ATOM_CHARGE/SPIN and CDFT_GROUP_CHARGE/SPIN_DIFF cDFT modes.

Default: False

Example: CDFT_GROUP_CHARGE_DONOR T

CDFT_GROUP_CHARGE_DOWN_ONLY
Syntax: CDFT_GROUP_CHARGE_DOWN_ONLY [Logical]

Description: Constrain only SPIN-DOWN channel in CDFT_GROUP_CHARGE_ACCEPTOR,
CDFT_GROUP_CHARGE_DONOR and CDFT_GROUP_CHARGE_DIFF modes. To avoid disaster, make
sure the specified CDFT_CHARGE_ACCEPTOR/DONOR_TARGET or CDFT_CHARGE_DIFF_TARGET
keywords are consistent with the fact only one spin channel is being constrained. This functional-
ity is NOT compatible with CDFT_GROUP_CHARGE_UP_ONLY, CDFT_ATOM_CHARGE/SPIN, and
CDFT_GROUP_SPIN_ACCEPTOR/DONOR and CDFT_GROUP_SPIN_DIFF cDFT modes.

Default: False

Example: CDFT_GROUP_CHARGE_DOWN_ONLY T

CDFT_GROUP_CHARGE_UP_ONLY
Syntax: CDFT_GROUP_CHARGE_UP_ONLY [Logical]

Description: Constrain only SPIN-UP channel in CDFT_GROUP_CHARGE_ACCEPTOR,
CDFT_GROUP_CHARGE_DONOR and CDFT_GROUP_CHARGE_DIFF modes. To avoid disaster, make
sure the specified CDFT_CHARGE_ACCEPTOR/DONOR_TARGET or CDFT_CHARGE_DIFF_TARGET
keywords are consistent with the fact only one spin channel is being constrained. This functionality is
NOT compatible with CDFT_GROUP_CHARGE_DOWN_ONLY, CDFT_ATOM_CHARGE/SPIN, and
CDFT_GROUP_SPIN_ACCEPTOR/DONOR and CDFT_GROUP_SPIN_DIFF cDFT modes.

Default: False

Example: CDFT_GROUP_CHARGE_UP_ONLY T

CDFT_GROUP_SPIN_ACCEPTORSyntax: CDFT_GROUP_SPIN_ACCEPTOR [Logical]

Description: Activate acceptor-group magnetic-moment constrained-DFT mode. This mode is compatible with
CDFT_GROUP_SPIN_DONOR and CDFT_GROUP_CHARGE_ACCEPTOR/DONOR cDFT-modes, and incompat-
ible with CDFT_ATOM_CHARGE/SPIN and CDFT_GROUP_CHARGE/SPIN_DIFF cDFT modes.

Default: False

Example: CDFT_GROUP_SPIN_ACCEPTOR T

CDFT_GROUP_SPIN_DIFF
Syntax: CDFT_GROUP_SPIN_DIFF [Logical]

Description: Activate group magnetic-moment-difference constrained-DFT mode. This mode is compat-
ible with CDFT_GROUP_CHARGE_DIFF cDFT mode only. Thus, it is incompatible with any other
CDFT_ATOM_CHARGE/SPIN and CDFT_GROUP_CHARGE/SPIN_ACCEPTOR/DONOR cDFT modes.

Default: False

Example: CDFT_GROUP_CHARGE_DIFF T

CDFT_GROUP_SPIN_DIFF_TARGET
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Syntax: CDFT_SPIN_DIFF_TARGET [Real]

Description: Targeted magnetic-moment difference between acceptor and donor group for group magnetic-moment-
difference constrained-DFT mode [CDFT_GROUP_SPIN_DIFF=T].

Default: 0.

Example: CDFT_CHARGE_ACCEPTOR_TARGET 2

#Constrain [Nup-Ndown]_ACC - [Nup-Ndown]_DON to 2 e.

CDFT_GROUP_SPIN_DONOR
Syntax: CDFT_GROUP_SPIN_DONOR [Logical]

Description: Activate donor-group magnetic-moment constrained-DFT mode. This mode is compatible with
CDFT_GROUP_SPIN_ACCEPTOR and CDFT_GROUP_CHARGE_ACCEPTOR/DONOR cDFT-modes, and in-
compatible with CDFT_ATOM_CHARGE/SPIN and CDFT_GROUP_CHARGE/SPIN_DIFF cDFT modes.

Default: False

Example: CDFT_GROUP_SPIN_DONOR T

CDFT_GURU
Syntax: CDFT_GURU [Logical]

Description: Tell ONETEP you are a cDFT-expert and prevent it from initialising the active |Uq/s| to failsafe value of
1 eV overwriting the values entered in the %block constrained_dft (Uq/s).

Default: False

Example: CDFT_GURU T

CDFT_HUBBARD
Syntax: CDFT_HUBBARD [Logical]

Description: Activate the constrained-DFT+U functionality. It requires specifications of a positive value for the Hub-
bard correction (Uh) in the CONSTRAINED_DFT Block.

Default: False

Example: CDFT_HUBBARD T

CDFT_MAX_GRAD
Syntax: CDFT_MAX_GRAD [Real]

Description: Specifies the convergence threshold for the maximum value of the constraining-potential (Uq/s) gradient
at any cDFT-site

Default: 1.0E-3

Example: CDFT_MAX_GRAD 0.01

CDFT_MULTI_PROJ
Syntax: CDFT_MULTI_PROJ [Logical]

Description: Activate the “as many cDFT-projectors as NGWFs” cDFT-mode. In this mode, the number of cDFT-
projectors for a given cDFT-atom equals the number of NWGFs for that atom as specified in the %block species.
Both the cDFT-projectors and the NGWFs are localised within spheres of the same radius. When activated, this mode
overwrites the L-projectors and Z-projectors settings in %block constrained_dft, and the cDFT-projectors are built
according to the settings in %block species_atomic_set for that atom=cDFT-site.

Default: False

4.2. Constrained Density Functional Theory (cDFT) 125



ONETEP Documentation, Release 7.1.8

Example: CDFT_MULTI_PROJ T

CDFT_PRINT_ALL_OCC
Syntax: CDFT_PRINT_ALL_OCC [Logical]

Description: Print detailed information of occupancies for al the cDFT-sites, for OUTPUT_DETAIL = VERBOSE.

Default: False

Example: CDFT_PRINT_ALL_OCC T

CDFT_READ_PROJ
Syntax: CDFT_READ_PROJ [Logical]

Description: Read cDFT-projectors from .tightbox_hub_proj file. Activation of this keyword overwrites any Z-
projector setting in %block constrained_dft. It also makes not necessary to set hubbard_proj_mixing<0 to have
task=HUBBARDSCF runs with projectors read in from file.

Default: False

Example: CDFT_READ_PROJ T

CDFT_SPIN_ACCEPTOR_TARGET
Syntax: CDFT_SPIN_ACCEPTOR_TARGET [Real]

Description: Targeted group magnetic-moment for acceptor-group magnetic-moment constrained-DFT mode
[CDFT_GROUP_SPIN_ACCEPTOR=T].

Default: 0.

Example: CDFT_SPIN_ACCEPTOR_TARGET -2 #Constrain Nup-Ndown=-2 in subspace

CDFT_SPIN_DONOR_TARGET
Syntax: CDFT_SPIN_DONOR_TARGET [Real]

Description: Targeted group magnetic-moment for donor-group magnetic-moment constrained-DFT mode
[CDFT_GROUP_SPIN_DONOR=T].

Default: 0.

Example: CDFT_SPIN_DONOR_TARGET -2 #Constrain Nup-Ndown=-2 in subspace

CDFT_TRIAL_LENGTH
Syntax: CDFT_TRIAl_LENGTH [Real]

Description: Specifies initial trial length for first step of constraining-potential (Uq/s) conjugate gradients optimisation.

Default: 0.1

Example: CDFT_TRIAL_LENGTH 1.0

CI_CDFT
Syntax: CI_CDFT [Logical]

Description: Perform a Configuration Interaction calculation based on constrained-DFT configurations.

Default: False

Example: CI_CDFT T

CI_CDFT_NUM_CONF
Syntax: CDFT_MAX_GRAD [Integer]
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Description: Specifies the number of constrained-DFT configuration available for a CI_CDFT=T simulation

Default: 0

Example: CI_CDFT_NUM_CONF 4

CONSTRAINED_DFT
Syntax: CONSTRAINED_DFT [Block]

Syntax: %BLOCK CONSTRAINED_DFT

S1 L1 Z1 Uh1 Uq1(UP) Uq1(DOWN) Us1 N1(UP) N1(DOWN) [N1(UP)-N1(DOWN)] S2 L2 Z2 Uh2 Uq2(UP)
Uq2(DOWN) Us2 N2(UP) N2(DOWN) [N2(UP)-N2(DOWN)] . . . . .

. . . . .

SM LM ZM UhM UqM(UP) UqM(DOWN) UsM NM(UP) NM(DOWN) [NM(UP)-NM(DOWN)]

%ENDBLOCK CONSTRAINED_DFT

Description: Manages constrained-DFT simulations. Provided cdft_multi_proj=F, for species S and subspace of
angular momentum channel L (with principal quantum number n=L+1) we apply charge spin-specific [Uq(UP),
Uq(DOWN)] or magnetic-moment-specific (Us) constraining potentials (eV). For cdft_atom_charge=T, N(UP) and
N(DOWN) indicate the targeted e-population for spin-channel UP and DOWN, respectively. For cdft_atom_spin=T,
[N1(UP)-N1(DOWN)] indicates the targeted e-population difference (i.e. local magnetic moment). Uh indicates the
optional Hubbard parameter (U, eV) to be applied for cdft_hubbard=T. An effective nuclear charge Z defines the hy-
drogenic orbitals spanning the subspace unless a negative value is given, e.g., Z=-10, in which case the NGWFs initial
guess orbitals (numerical atomic orbitals) are used. Depending on the activated cDFT-mode, different columns of the
block are used. These are:

S, L, Z, (Uh), Uq(UP), Uq(DOWN), N(UP), N(DOWN) for cdft_atom_charge=T

S, L, Z, (Uh), Us, [N(UP)-N(DOWN)] for cdft_atom_spin=T

S, L, Z, (Uh), Uq(UP), Uq(DOWN) for cdft_group_charge_acceptor=T, cdft_group_charge_donor=T, or
cdft_group_charge_diff=T. In this case, Uq(UP) must be equal to Uq(DOWN). Acceptor and donor atoms
are differentiated by mean of negative [Uq(UP/DOWN)<0] and positive [Uq(UP/DOWN)>0] constraining-
potentials, respectively. Setting Uq=0 in the %block constrained_dft will result in the given cDFT-atom
being excluded from the list of the atoms in a given cdft_group_charge_donor/acceptor/diff group.

S, L, Z, (Uh), and Us for cdft_group_spin_acceptor=T, cdft_group_spin_donor=T, or
cdft_group_spin_diff=T. In this case, Acceptor and donor atoms are differentiated by mean of neg-
ative (Us<0) and positive (Us>0) constraining-potentials, respectively. Setting Us=0 in the %block
constrained_dft will result in the given cDFT-atom being excluded from the list of the atoms in a given
cdft_group_spin_donor/acceptor/diff group.

cdft_group_spin_acceptor=T, cdft_group_spin_donor=T, cdft_group_charge_acceptor=T and
cdft_group_charge_donor=T are all compatible one with another. Charge- and magnetic-moment
acceptor- and donor-groups may or may not be the same group. Thus, besides simultaneously constraining
the charge and magnetic-moment on a given group, it is also possible (by setting the appropriate sign of
Uq and Us in the %block constrained_dft) to create, within the same input and system, a charge_acceptor
group-A, a charge_donor group-B, a spin_acceptor group-C and a spin_donor group-C. Similar consider-
ations apply also for simultaneous activation of group_charge_diff and group_spin_diff cDFT-modes. In
sum,

Activation of cdft_group_charge_up(down)_only=T for cdft_group_charge_acceptor/donor or
cdft_group_charge_diff modes leads to optimisation of the Uq potentials only for the selected
spin-channel i.e. Uq(UP) only for cdft_group_charge_up_only=T, and Uq(DOWN) only for
cdft_group_charge_down_only=T, leaving the other spin channel unconstrained.
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For cdft_multi_proj=T the L-projector and Z-projector columns in the %block constrained_dft are read
but NOT used. The cDFT-projectors are set on the basis of the %block species_atomic_set and taken as
the NGWFs initial guess (numerical atomic orbital). This leads to as many cDFT-projectors as NGWFs for
the cDFT-atom being used. In the current implementation, the same Uq/s is applied to all the projectors
of a given cDFT-atom regardless of their principal quantum number and angular momentum.

For all the cDFT-modes, unless maxit_cdft_u_cg=0, and depending of the specific cDFT-mode, the con-
straining potentials (Uq,Us) will be automatically optimised. Note that, unless cdft_guru=T, the constrain-
ing potentials (Uq/s) will be initialised to 1 eV. Thus, to perform fixed-Uq/s cDFT-runs or to initialise Uq/s
with values different from 1 eV (useful for low-energy spin-excitation), it is necessary to set cdft_guru=T.

The CONSTRAINED_DFT Block is incompatible with the HUBBARD Block. To perform a constrained-
DFT+U simulation with Hubbard (Uh) correction applied to the subspace in addition to the constraining
potentials (Uq/s) it is necessary to set cdft_hubbard=T. For cdft_hubbard=F (which is the default), the
Hubbard correction will NOT be applied to the subspace.

Example: %BLOCK CONSTRAINED_DFT

# L Z Uh Uq(UP) Uq(DOWN) Us N(UP) N1(DOWN) [N1(UP)-N1(DOWN)]

N1 1 -5. 0.0 11.0 11.0 0.0 2.3 1.3 0.

N2 1 -5. 0.0 -26.0 -26.0 0.0 2.7 2.7 0.

%ENDBLOCK CONSTRAINED_DFT

MAXIT_CDFT_U_CG
Syntax: MAXIT_CDFT_U_CG [Integer]

Description: Specifies the maximum number of iterations for the constraining potentials (Uq/s) conjugate gradients
optimisation.

Default: 60

Example: MAXIT_CDFT_U_CG 5

HUBBARD_TENSOR_CORR
Syntax: HUBBARD_TENSOR_CORR [Integer]

Description:

1: Correct tensorially for the slight nonorthogonality between DFT+U or constrained DFT
(cDFT) projectors of numerical pseudoatomic orbital form, individually on each atom, which
arise due to finite psinc sampling. See details see Phys. Rev. B 83, 245124 (2011).

2: Use the full simulation-cell overlap matrix of the initial numerical pseudoatomic orbitals
(whether or not they are selected as projectors) to form the nonorthogonality correction, in the
vein of Mulliken analysis. Experimental, non-Hermitian at present, and not recommended.

3: Do not correct for the slight nonorthogonality between DFT+U or constrained DFT (cDFT)
projectors on a given atom. This is standard in many codes, and currently necessary to choose
when using USP/PAW.

4: This is a reasonable, but not necessary choice, when using cDFT with constraints based on
atom group populations. The non-negligible nonorthogonality between projectors on different
atoms in the group is accounted for tensorially. This also activates multi-site Pulay force terms
in constrained DFT (cDFT) that account for varying inter-atom nonorthogonality. For details
see Phys. Rev. B 97, 205120 (2018).

5: This is also an arguably reasonable, but not necessary choice, when using cDFT with con-
straints based on, e.g. the difference of atom or atom group populations, that is source-drain
cDFT. The non-negligible nonorthogonality between projectors on different atoms in a group
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is accounted for tensorially, and also the possible nonorthogonality between the source and
drain atoms or atom-groups. For an application see Phys. Rev. B 93, 165102 (2016). This
also activates (in principle) multi-site Pulay force terms in constrained DFT (cDFT) that ac-
count for varying inter-subspace nonorthogonality. This also activates multi-site Pulay force
terms in constrained DFT (cDFT) that account for varying inter-atom nonorthogonality. This
also activates multi-site Pulay force terms in constrained DFT (cDFT) that account for varying
inter-atom nonorthogonality. For details see Phys. Rev. B 97, 205120 (2018).

The HUBBARD_TENSOR_CORR functionality is not activated in the rare case that analytical hydrogenic
projectors are instead of the default numerical pseudoatomic ones.

Default: 1

Example: HUBBARD_TENSOR_CORR 4
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This document is intended as a guide to the molecular dynamics (MD) functionality in ONETEP (v4.4) [Skylaris2005].
Though some theoretical concepts are reviewed, it is not meant to be a stand-alone introduction to Born-Oppenheimer
Molecular Dynamics (BOMD) simulations. The reader is referred to the textbook of Frenkel and Smit [Frenkel2001]
for a review of the field.

5.1.1 Integrating the equations of motion
The MD functionality implemented in ONETEP is founded on the Born-Oppenheimer approximation which states that
the electrons are much lighter than nuclei, the dynamics of electrons is much faster compared to the dynamics of the
nuclei. As a consequence, the former can be considered to react instantaneously to the motion of the latter. The forces
acting on the nuclei are derived from the ground state electronic configuration by means of the Hellmann-Feynamn
theorem. The motion of the nuclei is described by the laws of classical mechanics

𝜕𝐻

𝜕r
= −ṗ and

𝜕𝐻

𝜕p
= ṙ

where𝐻 is the Hamiltonian (or the total energy) of the system and r, p are the nuclei positions and conjugate momenta.
At each MD steps, the forces on the particles are computed, and the particles positions and momenta are updated ac-
cording to Newton’s equations of motion. Though this is an excellent approximation for many materials, it is important
to keep in mind that classical dynamics does not account for quantum phenomena such as zero point motion, tunneling,
or quantum fluctuations which may play a significant role in the dynamics of some systems.

In a BOMD simulation, the classical laws of motion are integrated using a finite difference scheme (that usually pre-
serves the symplectic structure of phase space, e.g. the Velocity-Verlet algorithm [Verlet1967], [Swope1982]). For
small enough time steps, the particle trajectory becomes independent of the discretization and the total energy of the
system is conserved. At room temperature and in situation close to equilibrium, a time step ∆𝑡 of a fraction of a
femtosecond is usually adopted.

The Velocity-Verlet algorithm corresponds to the following set of four operations:

1 : v𝑛+1/2 = v𝑛 +
∆𝑡

2𝑚
* F𝑛 (5.1)

2 : r𝑛+1 = r𝑛 + ∆𝑡 * v𝑛+1/2 (5.2)

3 : Compute ionic forces F𝑛+1 (5.3)

131



ONETEP Documentation, Release 7.1.8

4 : v𝑛+1 = v𝑛+1/2 +
∆𝑡

2𝑚
* F𝑛+1 (5.4)

where subscripts are used to label the MD time steps. This approach yields a reversible integrator that weights correctly
the phase space and conserves the phase space volume.

The velocities in eqs. (5.1)-(5.4), are the internal (or peculiar) velocities and not the atomic velocities. Internal ve-
locities are used to properly take into account the internal motion of the system, for which the total linear momentum
must vanish. When using open boundary conditions, the use of internal velocities ensures that also the total internal
angular momentum vanishes. By setting the total linear (angular) momentum to zero at the beginning of a simulation
while employing atomic velocities in eqs. (5.1)-(5.4), does not guarantee to keep the linear (angular) momentum con-
served. This is due to numerical errors that unavoidably modify the initial values. One of the possible drawback is the
well-known “flying ice cube effect”. The interested reader is referred to Ref. [Hunenberger2005] for a comprehensive
description. However, before printing out the trajectory info to the rootname.md file, the internal velocities are trans-
formed back to the atomic velocities for visualization and post-processing. In the limit of very long time, the ergodic
hypothesis is invoked which allows us to derive ensemble averages from the molecular trajectories.

5.1.2 Basic input parameters
The Molecular Dynamics functionality is activated by setting the input parameter TASK to MOLECULARDYNAMICS. If
a fresh calculation is started, the initial nuclear positions are read from the POSITIONS_ABS block while the nuclear
velocities are obtained from the VELOCITIES block. If the latter is not specified, the velocities are drawn from a
maxwell-boltzmann distribution at a (user defined) temperature set in the THERMOSTAT block (see Thermostats sec-
tion). The values of ∆𝑡 is determined by the parameter MD_DELTA_T. The number of integration steps is fixed by
MD_NUM_ITER.

For example, the following set of input parameters instructs the code to run a 4 ps long BOMD calculation with ∆𝑡 = 0.8
fs.

TASK : MOLECULARDYNAMICS
MD_DELTA_T : 0.8 fs
MD_NUM_ITER : 5000
MD_PROPERTIES : T
MD_RESTART : F

The flag MD_PROPERTIES instructs the code to enter the properties module at each MD steps. During the calculation
a file rootname.md is generated that contains a summary of the trajectory, such as temperature, energies, nuclear
positions, velocities and forces at each MD steps. Additionally, the latest phase space coordinates are stored in the
unformatted file rootname.md.restart. The flag MD_RESTART enables to restart an MD calculation from the phase
space coordinates stored in rootname.md.restart. It is important to stress here that MD_NUM_ITER is an incremental
counter. This means that the when starting a fresh calculation the number of MD steps corresponds to MD_NUM_ITER,
while for a restart calculation the actual number of MD steps is calculated as the difference between MD_NUM_ITER and
the total number of MD steps completed up to that point. Therefore, if we want to continue the 4 ps long calculation
of the previous example for other 4 ps, we would have to set

TASK : MOLECULARDYNAMICS
MD_DELTA_T : 0.8 fs
MD_NUM_ITER : 10000
MD_PROPERTIES : T
MD_RESTART : T

5.1.3 Thermostats
The THERMOSTAT block must be defined for any MD calculation, even when performing microcanonical runs. For
equilibration purposes or to extract thermodynamical averages, it is often desirable to sample the canonical ensemble
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(constant-NVT) rather than the microcanonical one (constant-NVE). In order to achieve this, there needs to be a mech-
anism (i.e. a thermostat) by which the system can exchange energy with the rest of the universe. Several thermostats,
Andersen, Langevin, Nose-Hoover chains, Berendsen and Bussi, are available in ONETEP.

Andersen thermostat

One of the simplest constant temperature algorithm has been proposed by Andersen [Andersen1980]. The system is
thermally coupled with a bath of fictitious particles at temperature 𝑇 . Practically this coupling acts by replacing the
momentum of a number of atoms by a new momentum derived from the appropriate Boltzmann distribution. The
strength of the coupling can be adjusted by fixing the characteristic time (𝜏 ) at which the momentum rescaling occurs
and the amplitude (𝛾) of the rescaling. Eventually, the probability that collision occurs during a time step ∆𝑡 is given
by,

𝑞𝑐𝑜𝑙 = 1 − 𝑒−Δ𝑡/𝜏 (5.5)

and the collision on atom 𝑖 acts as,

𝑝𝑛𝑒𝑤 =
√︀

(1 − 𝛾2) 𝑝+ 𝛾 𝑝𝑏𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛, (5.6)

where 𝑝𝑛𝑒𝑤 is the momentum rescaled by Andersen thermostat, and 𝑝𝑏𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 is a random variable with appropriate
Boltzmann distribution.

Langevin thermostat

The Langevin thermostat accounts for the motion of the atoms in the presence of a fictitious viscous solvent [Grest1986].
As they have to be pushed away, the solvent particles create a friction force damping the momentum of the atoms.
Besides random perturbations of the ionic forces arise from the collisions between the atoms and the solvent particles.
Langevin dynamic corresponds to the modified equation of motion,

𝑝𝛼 = 𝐹𝛼 − 𝛾
𝑝𝛼
𝑚𝛼

+ 𝑓𝛼 (5.7)

where greek superscripts label the nuclei, 𝐹𝛼 are the conservative forces acting on the nuclei, 𝛾 is the damping factor
associated with the solvent viscosity and 𝑓𝛼 are the random forces accounting for the collisions. In order to guarantee
NVT statistics, the random forces and the damping factor are chosen so as to fulfill the fluctuation-dissipation theorem.
Eventually, the update of the nuclei momenta 𝑝𝛼 and forces 𝐹𝛼 is given by,

𝑝𝑛𝑒𝑤𝛼 = 𝑝𝛼 * 𝑒−𝛾Δ𝑡

𝐹𝑛𝑒𝑤
𝛼 = 𝐹𝛼 * 1

𝛾
(1 − 𝑒−𝛾Δ𝑡) + 𝑓𝛼

𝑓𝛼 =

√︂
𝑚𝛼𝑘𝐵𝑇 (1 − 𝑒−2𝛾Δ𝑡)

∆𝑡2
* 𝜉𝛼

where {𝜉𝛼} is a set of mutually uncorrelated random Gaussian variables with a zero mean and unit variance.

Nosé-Hoover thermostat and Nose-Hoover chains

In the Andersen and Langevin approaches, the constant temperature is achieved by stochastic collisions with ficti-
tious particles. The approach of Nosé is different and allows to perform deterministic MD at constant temperature
[Nose1984], [Hoover1985]. To achieve isothermal MD, an additional coordinate associated with an effective mass is
introduced in the Lagrangian ruling the dynamics of the nuclei. For a derivation of the equations of motion, the reader
is referred to the textbook of Berend and Smith. Provided the center of mass of the system remains fixed, the Nosé-
Hoover thermostat leads to a canonical distribution of positions and momenta. To alleviate this restriction on the center
of mass, the nuclei are coupled to a Nosé-Hoover thermostat whose fluctuations are determined by another thermostat
(i.e. the so called Nosé-Hoover chains). In ONETEP, the effective masse of the thermostats (𝑄𝑡ℎ𝑖 ) is chosen, following
the prescription of Martyna and Tuckerman [Martyna1996], as

𝑄𝑡ℎ1 = 3𝑁
𝑘𝐵𝑇

𝜔2
(5.8)
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𝑄𝑡ℎ𝑖 =
𝑘𝐵𝑇

𝜔2
, (5.9)

where N is the number of nuclei and 𝜔 = 2𝜋/𝜏 is the characteristic frequency of the thermostats. That parameter 𝜏
has to be chosen so as to guarantee a good coupling with the atomic system. E.g. when water is used as solvent in the
system, a value of 9.4 fs is appropriate as it corresponds to the first asymmetric stretching mode of water molecules.

Berendsen thermostat

In the Berendsen thermostat, the ionic equation of motions are supplemented by a first order equation for the kinetic
energy,

𝑑𝐾 =
𝐾𝑡 −𝐾

𝜏
𝑑𝑡 , (5.10)

where 𝐾𝑡 stands for the target kinetic energy. The weak coupling of the system with the heat bath is determined by
the time constant 𝜏 . This thermostat does not generate a canonical ensemble but is vary efficient for thermalization of
large systems.

Canonical velocity scaling

An extension of the Berendsen thermostat allows to recover the canonical distribution of the kinetic energy. In this
approach, the instantaneous kinetic energy is propagated using an auxiliary stochastic dynamics. The equation of
motion for the kinetic energy is defined as,

𝑑𝐾 =
𝐾𝑡 −𝐾

𝜏
𝑑𝑡 + 2

√︂
𝐾𝐾𝑡

3𝑁𝜏
𝑑𝑊 , (5.11)

where 𝐾𝑡 stands for the target kinetic energy and 𝑑𝑊 is a Wiener noise. For a complete derivation of the equations
of motion, the reader is referred to G. Bussi et al. [Bussi2007]. In the same way as for the Berendsen thermostat, the
coupling of the system with the heat bath is determined by the characteristic time 𝜏 .

5.1.4 Thermostat definition
The parameters related to constant-NVE or constant-NVT sampling are determined by means of the THERMOSTAT block.
For a constant-NVE calculation, the thermostat block is needed to specify the initial temperature for the maxwell-
boltzmann distribution, from which initial velocities are drawn. For constant-NVT sampling, different thermostats can
be associated with different groups of atoms.

%block thermostat
start_iter & end_iter & thermo_name & temp & ! First thermostat definition

option_1 = value ! Optional parameter 1
option_2 = value ! Optional parameter 2

start_iter & stop_iter & thermo_name & temp & ! Second thermostat definition
option_1 = value ! Optional parameter 1
option_2 = value! Optional parameter 2

%endblock thermostat

A thermostat definition contains four mandatory parameters and several optional parameters. The mandatory param-
eters are : the starting and stopping MD steps (these must be set bearing in mind the global counter logic), the type
of thermostat (i.e. none, andersen, langevin, nosehoover, berendsen, or bussi,) and the temperature. The line
containing the mandatory parameters may be followed by one or more of optional parameter definition (one per line).

Let us set an NVT calculation at 300K with Langevin thermostat for the equilibration (3000 steps) and Nosé-Hoover
thermostat for the thermodynamical sampling (10000 steps). The input parameters could look like
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%block thermostat
0 3000 langevin 300.0 K

damp = 0.2
3001 13000 nosehoover 300.0 K

nchain = 4
nsteps = 10
tau = 100fs

%endblock thermostat

If both MD_RESTART and MD_RESTART_THERMO flags are set to true, the thermostat internal parameters are initial-
ized from the values found in the unformatted file namedrootname.thermo.restart (rootname.thermo.global.
restart if MD_GLOBAL_RESTART = .true., see section on MD history). This is particularly useful when using
Nosé-Hoover thermostat as it avoids any disruption in the trajectories of the thermostat coordinates. A formatted re-
port on the thermostat trajectories is outputted in the file rootname.thermo.

Thermostat optional parameters

tgrad
(Physical) (default = 0K)
Discrete variation of temperature T per MD step.

group
(Integer) (default = 0)
Index of the group of atoms (as defined in positions_abs) to wich the thermostat is coupled. If no group of
atoms is specified the thermostat is applied to the full system (i.e. group index 0).

tau
(Physical) (default = 10*MD_DELTA_T)
Characteristic time scale of the thermostat. Depending on the type of thermostat, it may relate either to the
average collision frequency (see Eq. (5.5)) or the thermostat fluctuation frequency (see Eqs. (5.8) and (5.9)) or
to the coupling with the heat bath (see Eqs. (5.10) and (5.11)).

mix
(real) (default = 1.0)
Collision amplitude of the Andersen thermostat (see Eq. (5.6)).

damp
(real) (default = 0.2)
Damping factor in the Langevin equation of motion (see Eq. (5.7)).

nchain
(integer) (default = 0)
Number of thermostats in the Nosé Hoover chain.

nsteps
(integer) (default = 20)
Number of substep used to integrate the equation of motion of the Nosé-Hoover coordinates.

update
(logical) (default = .false.)
Impose to update the effective masses of the Nosé-Hoover coordinates when the temperature is modified.
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5.1.5 Using MD history
In order to predict sensible trajectories and ensemble averages, BOMD requires to solve the self-consistent field (SCF)
equations that determines the ground-state electronic structure at each MD steps. Solving the SCF equations therefore
dominates the computational effort. The number of SCF cycles required to reach a given level of self-consistency can
be substantially reduced by using a good initial guess for the electronic degrees of freedom. Various schemes have
been proposed that enable to make a good use of the MD history in order to build efficient initial guesses.

Extrapolation of NGWFs and density kernel

In ONETEP [Skylaris2005], the Kohn-Sham SCF equations are formulated in terms of the single-particle density
matrix 𝜌(x,x′),

𝜌(x,x′) = 𝜑𝛼(x) 𝐾𝛼𝛽 𝜑*𝛽(x′) , (5.12)

where Einstein’s notation for repeated indices has been used. {𝜑𝛼(x)} is a set of localised support functions, here-
after named Non-orthogonal Generalized Wannier Functions (NGWFs), and K is the kernel representing the density
operator. At each MD step, the total energy is minimized with respect to both the density kernel and the support func-
tions. Here below, we briefly review various algorithms that allows to initialise the density kernel and NGWFs by
extrapolation from previous time steps.

Hereafter, 𝜒init
𝑖 and 𝜒scf

𝑖 are used to represent respectively the initial guess and SCF solution for either the density kernel
or a given NGWF at time 𝑡 = 𝑖∆𝑡.

One-dimensional linear extrapolation

The simplest attempt at a trial configuration for the electronic degrees of freedom is the linear
extrapolation,

𝜒init
(𝑖+1) = 2𝜒scf

𝑖 − 𝜒scf
(𝑖−1). (5.13)

Multi-dimensional linear extrapolation

The idea of multi-dimensional linear extrapolation was first proposed by Arias, Payne and Joannopoulos
for the generation of trial wavefunctions [Arias92]. The one-dimensional linear extrapolation scheme
creates an acceptable initial configuration for the ionic coordinates r′ = 2r𝑖 − r(i−1). However, the
actual coordinates r𝑖+1 are in general different. In order to account for the non-linear propagation of the
coordinates, the extrapolation can be generalized as follow,

𝜒init
(𝑖+1) = 𝜒scf

𝑖 +

𝑁∑︁
𝑛=0

𝑐𝑛

(︁
𝜒scf
(𝑖−𝑛) − 𝜒scf

(𝑖−(𝑛+1))

)︁
(5.14)

where the 𝑁 + 1 coefficients {𝑐𝑛} are chosen by minimizing the norm,⃦⃦⃦⃦
⃦(r𝑖 − r𝑖+1) +

𝑁∑︁
𝑛=0

𝑐𝑛
(︀
r(𝑖−𝑛) − r(𝑖−(𝑛+1))

)︀⃦⃦⃦⃦⃦ . (5.15)

This insures that the extrapolated degrees of freedom are in close correspondence to the BOMD
trajectory.

Generalized multi-dimensional linear extrapolation

The multi-dimensional extrapolation of NGWFs can be further generalized in order to account for the
local characteristics of the ionic trajectories. By introducing a localization function 𝐹 (𝑟 − 𝑟𝑐𝑢𝑡) within
Eq.[multixtpol2], the coefficients {𝑐𝑛} can be further optimized with respect to the local environment. In
practice, a set of coefficients {𝑐𝑛}𝛼 is derived for each ion (𝛼) by minimizing the modified norm,
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⃦⃦⃦⃦
⃦(︀r′(𝛼)𝑖 − r′(𝛼)(𝑖+1)

)︀
+

𝑚∑︁
𝑛=0

𝑐(𝛼)𝑛
(︀
r′(𝛼)(𝑖−𝑛) − r′(𝛼)(𝑖−(𝑛+1))

)︀⃦⃦⃦⃦⃦ , (5.16)

where r′(𝛼)𝑖 refers to a local projection of the ionic coordinates at time 𝑡𝑖,

𝑟′(𝛼)𝛽,𝑖 = 𝐹 (𝑟𝛼,𝑖 − 𝑟𝛽,𝑖 − 𝑟𝑐𝑢𝑡) 𝑟𝛽,𝑖 (5.17)

This way, the extrapolated NGWFs associated with a given ion are in better correspondence to
the BOMD trajectory of its local environment.

One-dimensional polynomial extrapolation

Another way to extrapolate the density kernel and NGWFs is to assume that each element of the density
kernel (𝐾𝛼𝛽) and component of the NGWFs on the grid (𝜑𝛼(x)) can be represented as a polynomial in
the time 𝑡. Applied to the density kernel, this gives,

𝐾𝛼𝛽(𝑡) =

𝑁∑︁
𝑚=0

𝑐𝛼𝛽𝑚 𝑡𝑚 (5.18)

where the 𝑁 + 1 extrapolation coefficients 𝑐𝛼𝛽𝑚 are dertemined by fitting the polynomial ex-
pression to the last 𝑁 + 1 values of 𝐾𝛼𝛽 .

Density kernel transformations

The extrapolation schemes, as described above, illustrates a point of view in which the density kernel and the support
functions are considered on the same footing, either as a functional of the ionic coordinates or as an oscillatory function
in time. This is ignoring the close link between the support functions and the density kernel (see Eq.[dkn]). There is
a broader point of view, where the density kernel (𝐾𝛼𝛽) is considered as the representation of the density operator in
the time-dependent basis formed by the NGWFs. If one assume that the BOMD propagation of the electronic degrees
of freedom is more or less adiabatic, it is tempting to rely on the schemes described above for the extrapolation of the
support functions and to transform the latest density kernel in order to account for the modification of the basis set. In
ONETEP, this can be done in two ways.

Projection of the density kernel

The simplest attempt at transforming the density kernel in order to adapt it to the new support functions
is to project the density kernel onto the extrapolated NGWFs. This transformation reads,

Kinit
(𝑖+1) =

(︀
Sinit
𝑖+1

)︀−1
T(𝑖+1),𝑖 K

scf
𝑖 T𝑖,(𝑖+1)

(︀
Sinit
𝑖+1

)︀−1
,

where K𝑖 and S𝑖 stand for the density kernel and overlap matrix at MD step 𝑖; and T𝑖,(𝑖+1) is
the overlap between the NGWFs at MD step 𝑖 and the extrapolated NGWFs at step (𝑖+ 1).

Christoffel correction to the density kernel

While projecting the density kernel onto the extrapolated support functions is appealing because of its
conceptual simplicity, it does not fully account for the tensorial character of the density operator. As the
support functions are extrapolated, the metric of the representation manifold changes giving rise to
non-vanishing Christoffel symbols. In order to preserve tensorial integrity and idempotency to first order,
contributions from the Christoffel symbols should be accounted for in the transformation of the density
kernel. The correction to the density kernel then reads,
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∆Kinit
(𝑖+1) = −

(︀
Sscf
𝑖

)︀−1
D(𝑖+1),𝑖 K𝑖 −K𝑖 D𝑖,(𝑖+1)

(︀
Sscf
𝑖

)︀−1

with (︀
D(𝑖+1),𝑖

)︀
𝛼𝛽

=

⟨
(𝜑init

(𝑖+1))𝛼 − (𝜑scf
𝑖 )𝛼

⃒⃒⃒⃒
(𝜑scf

𝑖 )𝛽

⟩
.

Extended Lagrangian propagation of density kernel schemes

Extended Lagrangian naïve approach

The number of SCF iterations needed to reach a given threshold at each step of the BOMD calculation
can be significantly reduced by the extrapolation schemes presented in sections [xtpol] and [dkn].
However, those methods come with a caveat that has to be kept in mind. While, with a perfect SCF
optimization, the SCF ground-state electronic structure is independent from the initial guess, in practice,
self-consistence is only achieve up to a given threshold. The consequence of this incomplete convergence
is that the extrapolation schemes introduce a memory effect in the simulation and break the
time-reversibility of the BOMD algorithm. As a consequence, the resulting trajectories suffers from
systematic error and a significant energy drift may appear on time scales of a few picoseconds. A simple
way to restore energy conservation is to impose tighter SCF convergence thresholds. However, this may
results in a considerable increase of the computational cost. Another solution has been proposed by
Niklasson et al. (see Ref. [Niklasson2006]). This scheme restores the time-reversibility of BOMD by
extending the BO Lagrangian with auxilliary degrees of freedom directly associated with 𝜒0, the initial
guess of the electronic degrees of freedom. The user is referred to Refs. [Niklasson2006],
[Niklasson2009] for a complete introduction to this formalism.

Extended Lagrangian with dissipation, dEL/SCF

A more stable propagation scheme for the density kernel has also been proposed by Niklasson
[Niklasson2009]. In this scheme, the numerical errors arising from an incomplete convergence are
averaged out via a dissipative term in the extended BO Lagrangian. Following Bowler [Arita2014], we
propagate the orthogonal representation P of the auxiliary density kernel, i.e. P has the sparsity pattern
of KS rather than of K, to avoid the extra intricacies of propagating tensors in a space with non-unitary
metric. The dissipative term is defined in terms of a linear combination of previous density kernels,
which using the symplectic Verlet algorithm, yields the following equation of motion

P𝑖+1 = 2P𝑖 −P𝑖−1 + 𝜅[(KSscf)𝑖 −P𝑖]

+𝛼

𝑀∑︁
𝑚=0

𝑐𝑚P𝑖−𝑚.

where 𝜅, 𝛼 and 𝑐𝑚’s are optimized coefficients obtained from Ref. [Niklasson2009]. The initial
guess for the density kernel is given by

Kinit
𝑖+1 = sym(PS−1

𝑖+1) =
1

2
[(PS−1)𝑖+1 + (S−1P)𝑖+1]

The problem with the above mentioned scheme lays in the use of a dissipative term that un-
avoidably breaks the time-reversibility, which in turn will generate, over long simulation time,
a drift in the energy. However, for simulation time accessible at the moment in AIMD, this
issue is of little concern.

Extended Lagrangian with thermostat, inertial iEL/SCF
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Recently, a similar scheme that overcomes the issue of the time breaking symmetry has been proposed
[Albaugh2015]. The idea is to control the dynamics of the auxiliary degrees of freedom through a
thermostat. One of the simplest yet efficient thermostats around is the Berendsen thermostat. Here, we
also propagate the orthogonal representation of the auxiliary density kernel for the same reasons listed in
the previous section. The equation of motion for the auxiliary density kernel, using a velocity-Verlet
integrator, reads

P𝑖+1 = P𝑖 + Ṗ𝑖∆𝑡+ 𝜔2∆𝑡2[(KS)scf
𝑖 −P𝑖]

Ṗ𝑖+1 = 𝛾𝑖 ̃̇︀P𝑖+1

= 𝛾𝑖{Ṗ𝑖 + 𝜔2∆𝑡/2[((KS)scf
𝑖+1 −P𝑖+1)+

((KS)scf
𝑖 −P𝑖)]}

with 𝛾𝑖 given by

𝛾𝑖 =

⎯⎸⎸⎷1 +
𝜏

∆𝑡

(︃
𝑇K

⟨Ṗ𝑖
2 ⟩ − 1

)︃

where 𝑇K is the target temperature, 𝜏 is the characteristic time of the thermostat, and ⟨Ṗ𝑖
2⟩ is

the instantaneous temperature of the auxiliary degrees of freedom. The key parameter is the
target temperature and much care must be done in assigning a value for it.

5.1.6 Extrapolation and propagation of NGWFs
The main input parameters that determine the extrapolation and propagation of NGWFs are mix_ngwfs_type and
mix_ngwfs_num. The localization function 𝐹 (𝑟 − 𝑟𝑐𝑢𝑡) used in the generalized version of the multi-dimensional
linear extrapolation (see Eq. [genxtpol2].) is characterized by the input parameters mix_local_length and
mix_local_smear.

mix_ngwfs_type (String) (default = none)

none : No use of MD history. Initial NGWFs are built according to species_atomic_set block.
reuse : No mixing of NGWFs. NGWFs at previous MD step are used as initial guess.
linear : One dimensional linear extrapolation from NGWFs at two previous MD steps (see Eq. (5.13)).
multid : Multi-dimensional linear extrapolation from NGWFs at previous MD steps (see Eqs. (5.14) and
(5.15)). The dimension of the extrapolation space is determined by input parameter mix_ngwfs_num.
poly : One-dimensional polynomial extrapolation from NGWFs at previous steps (see Eqs. (5.16)). The
degree of the extrapolation polynom is determined by input parameter mix_ngwfs_num.
local : Generalized multi-dimensional linear extrapolation from NGWFs at previous steps (see Eqs.
(5.16)). The dimension of the extrapolation space is determined by input parameter mix_ngwfs_num.
The localization radius is determine by input parameter mix_local_length. Optionnally, the
localization radius can be smeared out by using non-zero values for mix_local_smear
trprop : Time-reversible propagation of auxiliary NGWFs. See section on extended Lagrangian and
references therein.

mix_ngwfs_num (Integer) (default depends on mix_ngwfs_type)

Number of previous MD steps required to build the initial guess for the density kernel

mix_loc_length (Physical) (default = 10.0 bohr)

Cutoff radius of the localization function 𝐹 (𝑟 − 𝑟𝑐𝑢𝑡), see Eq. (5.17)

mix_loc_smear (Physical) (default = 5.0 bohr)
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When mix_loc_smear is non-vanishing, the localization function 𝐹 (𝑟 − 𝑟𝑐𝑢𝑡) is assumed to be
Fermi-Dirac like with a characteristic smearing of mix_loc_smear.

5.1.7 Extrapolation and transformation of density kernel
The main input parameters that determine the extrapolation, transformation and propagation schemes for the density
kernel and NGWFs are respectively mix_dkn_type and mix_dkn_num.

mix_dkn_type (String) (default = none)

none : No use of MD history. Initial density kernel is built according to coreham_denskern_guess
parameter.
reuse : No kernel mixing. SCF density kernel at previous MD step is used as initial guess.
linear : One dimensional linear extrapolation from density kernel at two previous MD steps (see Eq.
(5.13)).
multid : Multi-dimensional linear extrapolation from density kernel at previous MD steps (see Eqs.
(5.14) and (5.15)). The dimension of the extrapolation space is determined by mix_dkn_num.
poly : One-dimensional polynomial extrapolation from density kernel at previous steps (see Eqs.
(5.16)). The degree of the extrapolation polynom is determined by mix_dkn_num.
proj : Projection of the previous SCF density kernel onto the set of extrapolated NGWFs. This option
requires mix_ngwfs_type ̸= none.
tensor : Correction of the previous SCF density kernel in order to preserve tensorial integrity. This
option requires mix_ngwfs_type ̸= none.
trprop : Naïve time-reversible propagation of auxiliary density kernel. See section on extended
Lagrangian and references therein.
dissip : Dissipative propagation of auxiliary density kernel. See section on extended Lagrangian and
references therein. The number of previous MD steps used for the derivation of the dissipative force is
determined by mix_dkn_num.
berendsen : Thermostatted propagation of auxiliary density kernel with Berendsen thermostat. See
section on extended Lagrangian and references therein. The target temperature for the thermostat is set
by md_aux_dkn_t and the characteristic time constant 𝜏 by md_aux_beren_tc.

mix_dkn_num (Integer) (default depends on mix_dkn_type)

Number of previous MD steps required to build the initial guess for the density kernel.

mix_aux_dkn_t (Physical) (default = 1e-8)

Target temperature of the auxiliary degrees of freedom to use in the Berendsen propagation of the density
kernel.

mix_aux_beren_tc (Physical) (default = 0.1 ps)

Characteristic time constant for the Berendsen thermostat to use in the Berensen propagation of the
density kernel.

5.1.8 Additional notes on extrapolation and propagation
Most of the extrapolation and propagation schemes suffer from restricted stability under incomplete SCF conver-
gence. Depending on the convergence parameters, significant discrepancies between the MD trajectories and the
Born-Oppenheimer surface may arise during the first few MD iterations. In this case, it is recommended not to use
the extrapolation and propagation schemes until a good level of SCF convergence is reached. The input parameters
mix_ngwfs_init_type and mix_ngwfs_init_num allows to set up a smooth initialization phase. It is also possible
to have a different (usually tighter) thresholds during this initialization phase. In fact, the usual lnv_threshold_orig
and ngwf_threshold_orig are used to set the LNV and NGWFs gradient thresholds during the intialization phase,
while the two keywords md_lnv_threshold and md_ngwf_threshold determine the LNV threshold and NGWFs
gradient threshold for the remaining MD calculation.
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It is also possible to periodically reset the MD history using mix_ngwfs_reset, mix_dkn_reset and
md_reset_history, although this is not recommended if one wants to avoid jumps into the energy profile, i.e. avoid
discontinuities in energy plots.

md_reset_history (Integer) (default = 100)

Every n MD steps, new initial guesses for the electronic degrees of freedom are built according to
coreham_denskern_guess and species_atomic_set.

mix_ngwfs_reset (Integer) (default = 50)

Every n MD steps, the NGWFs mixing/extrapolation scheme is reset and a new initial guess for the
NGWFs is built according to species_atomic_set.

mix_dkn_reset (Integer) (default = 50)

Every n MD steps, the density kernel mixing/extrapolation scheme is reset and a new initial guess for the
kernel is built according to coreham_denskern_guess.

mix_ngwfs_init_num (Integer) (default = 0)

Length of the initialization phase. Number of MD steps before the activation of the
extrapolation/propagation scheme for building NGWF initial guesses.

mix_ngwfs_init_type (String) (default = none)

none : During the initialization phase, initial NGWFs are built according to species_atomic_set
block.
reuse : During the initialization phase, NGWFs at last MD step is used as initial guess.

mix_dkn_init_num (Integer) (default = 0)

Length of the initialization phase. Number of MD steps before the activation of the
extrapolation/propagation scheme for building density kernel initial guesses.

mix_dkn_init_type (String) (default = none)

none : During the initialization phase, initial density kernels are built according to
coreham_denskern_guess.
reuse : During the initialization phase, density kernel at last MD step is used as initial guess.

md_lnv_threshold (Double) (default = lnv_threshold_orig)

LNV threshold for the MD calculation. This can be set to be different from the initial LNV threshold
lnv_threshold_orig of the first n steps (set by mix_ngwfs_init_num / mix_dkn_init_num).

md_ngwf_threshold (Double) (default = ngwf_threshold_orig)

NGWF gradient threshold for the MD calculation. This can be set to be different from the initial NGWF
gradient threshold ngwf_threshold_orig of the first n steps (set by mix_ngwfs_init_num /
mix_dkn_init_num).

5.1.9 Additional notes on restart when using a propagation scheme
If a “history” of NGWFs/density kernels is generated during a MD calculation it can be periodically saved into external
files through the keyword md_write_history. More precisely, when using md_write_history = T all the infor-
mation about the dynamical state (positions, velocities and accelerations), the thermostat state, and the propagation
scheme is saved to external files as well. To restart a MD calculation by reading in the history from the last save the
md_global_restart keyword must be set to true in the restart input file. On a restart, one can either use the thermostat
state stored in rootname.thermo.global.restart or start with a new thermostat block. This is achieved by setting
the md_restart_thermo keyword.

md_write_history (Integer) (default = -1)
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Every n MD steps the history of auxiliary density kernels is written into external files
rootname.history.dkn#.scf/init/vel (one of each kind for any element in the history). The info
on the dynamical state, the thermostat, the propagation scheme and the composition method are saved
into rootname.md.global.restart, rootname.md.thermo.restart, rootname.history.info
and rootname.history.var respectively.

md_global_restart (Logical) (default = F)

MD global restart. This allows to restart a calculation by reading in a history of density kernels if
present. md_restart is set to false.

md_restart_thermo (Logical) (default = T)

Read thermostat info from file. If set to false, the thermostat is set according to the thermostat block in
the input file.

WARNING: Restarting a calculation with md_global_restart = T comes with a caveat: depending on the value of
md_write_history the last batch of NGWFs/density kernels saved to files may not correspond to the NGWFs/density
kernels history of the last MD step completed. However, the calculation restarts using the information stored in
the rootname.history.info and rootname.history.var. As a result, there might be duplicated entries in the
rootname.md file which has to be deleted manually by the user.

For example, let’s consider the following scenario

MD_NUM_ITER : 124
MD_WRITE_HISTORY : 10

where we save a history of density kernels every 10 MD steps and the simulation stops after 124 steps. The last batch
of density kernels (together with all the other MD info) is saved at step 120, but the summary of the trajectory from
step 121-124 is still appended to rootname.md. When restarting with md_global_restart = T, the code reads in
the files rootname.history.info and rootname.history.var containing the info corresponding to step 120 and
starts to append the trajectory info to rootname.md. As a result, the summary of the trajectory from step 121-124 in
the rootname.md is duplicated.
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5.2 Phonon calculations
Author

Fabiano Corsetti, Imperial College London

Date
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5.2.1 Theory
We make use of the harmonic approximation, in which the total energy of the system 𝐸tot is expanded to quadratic
order in the displacement of the ions about their equilibrium positions:

𝐸tot = 𝐸eq +
1

2

∑︁
𝑎,𝛼,𝜅,𝑎′,𝛼′,𝜅′

𝑢𝑎,𝛼,𝜅𝜑
𝛼,𝛼′

𝜅,𝜅′ (𝑎, 𝑎′)𝑢𝑎′,𝛼′,𝜅′ ,

where 𝐸eq is the equilibrium energy and 𝑢𝑎,𝛼,𝜅 denotes a small displacement of ion 𝛼 belonging to unit cell 𝑎 in the
Cartesian coordinate direction 𝜅 from its equilibrium position; 𝜑 (𝑎, 𝑎′) is known as the force constants matrix, defined
as

𝜑𝛼,𝛼
′

𝜅,𝜅′ (𝑎, 𝑎′) =
𝜕2𝐸

𝜕𝑢𝑎,𝛼,𝜅𝜕𝑢𝑎′,𝛼′,𝜅′
.

It can be shown that the phonon frequencies 𝜔q,𝑛 at wavevector q are the eigenvalues of the dynamical matrix D (q),
which can be calculated from the Fourier transform of the force constants matrix:

𝐷𝛼,𝛼′

𝜅,𝜅′ (q) =
1√

𝑀𝛼𝑀𝛼′

∑︁
𝑎

𝜑𝛼,𝛼
′

𝜅,𝜅′ (𝑎, 0) e−iq·R𝑎 , (5.19)

where𝑀𝛼 is the mass of ion 𝛼 and R𝑎 is the lattice vector displacement for unit cell 𝑎. The vibrational free energy for
the unit cell is then given by

𝐹 (𝑇 ) =
1

2

∑︁
q,𝑛

𝜔q,𝑛 + 𝑘B𝑇
∑︁
q,𝑛

ln
(︁

1 − e−𝜔q,𝑛/𝑘B𝑇
)︁
, (5.20)

where the first term is the zero-point energy of the system, and the second term is the temperature-dependent part of the
free energy. In the limit of an infinite periodic system the sum over q should be replaced by an integral of the phonon
dispersion curves over the first Brillouin zone.

The phonon module in onetep uses the finite-displacement method to calculate the phonon frequencies of the system;
for molecules (the default), only the Γ-point frequencies 𝜔0,𝑛 are calculated, while for supercells of bulk crystal, any
arbitrary q point𝜔q,𝑛 can be calculated. The elements of the force constants matrix are calculated by a central-difference
formula, using either 2 (the default) or 4 displacements:⎧⎨⎩𝜑𝛼,𝛼

′

𝜅,𝜅′ ≈ 𝐹+
𝛼,𝜅−𝐹−

𝛼,𝜅

2𝑑 phonon_sampling 1 (2 disps.)

𝜑𝛼,𝛼
′

𝜅,𝜅′ ≈ −𝐹 2+
𝛼,𝜅+8𝐹+

𝛼,𝜅−8𝐹−
𝛼,𝜅+𝐹 2−

𝛼,𝜅

12𝑑 phonon_sampling 2 (4 disps.)
, (5.21)

where 𝐹±
𝛼,𝜅 is the force on ion 𝛼 in direction 𝜅 caused by a displacement ±𝑑 of ion 𝛼′ in direction 𝜅′, and 𝐹 2±

𝛼,𝜅 is the
same for a displacement ±2𝑑. Therefore, 6𝑁 /12𝑁 calculations are needed in total, where 𝑁 is the number of atoms
in the system. However, each of these calculations is simply a small perturbation on the equilibrium configuration.
Therefore, the converged set of NGWFs {𝜉𝛽 (r)} and density kernel K that are obtained from a preliminary ground-
state calculation on the equilibrium structure are used as the starting guess for each of the displacement calculations.

5.2.2 Overview of the phonon module
A phonon calculation in onetep is divided into three stages:
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1. A ground-state calculation is performed for the unperturbed configuration, as specified in the input file. The
forces on the ions are then calculated, and the code checks that the magnitude of the force on every ion is smaller
than the value specified by phonon_fmax, as the starting configuration must correspond to a minimum in the
energy landscape for the phonon calculation to be meaningful. If this requirement is not met, the calculation is
interrupted.

2. Each ion is displaced in turn in the +ve and −ve x-, y-, and z-directions by a distance 𝑑 (and, optionally, 2𝑑).
For each displacement a separate ground-state calculation is performed. The initial description of the electronic
structure is read in each time from the converged files <seedname>.dkn and <seedname>.tightbox_ngwfs
for the unperturbed structure that have been obtained from Stage 1; the overwriting of these files is therefore
disabled at the start of Stage 2. After each set of +ve/−ve displacements, one row of the force constants matrix
is calculated and written to the file <seedname>.force_consts_<i>, where <i> is the number identifier of
the row (going from 1 to 3𝑁 for an 𝑁 -atom system). It is important to note that not all rows are necessarily
computed, if some vibrational degrees of freedom are switched off (see section on selecting degrees of freedom
below), and/or a supercell calculation of bulk crystal is being performed (see section on supercell calculations
below); however, <i> retains the same value as it would have if all 3𝑁 rows were to be used.

3. The rows of the force constants matrix are read back in from the files <seedname>.force_consts_<i>, and the
full force constants matrix is constructed. The dynamical matrix can then be calculated for the desired q points
and diagonalized to find the phonon frequencies. First, the phonon frequencies are calculated on a regular grid
of q points (Γ only for a molecule); in either case, the Γ-point frequencies only are printed to standard output.
Then, the following thermodynamic quantities are calculated on the full grid and printed to standard output:
the zero-point energy, and the free energy, entropy, internal energy, and specific heat within a user-specified
temperature range. The phonon DOS is also calculated on the full grid and written to the file <seedname>.
qdos. Additionally, the user can specify a list of arbitrary q points, for which the phonon frequencies (and,
optionally, the corresponding eigenvectors) are calculated and written to the file <seedname>.phonon_freqs.
Finally, a list of Γ-point modes <j> can be specified for which animation files <seedname>.phonon_<j>.xyz
are written.

This division in stages is done so as to allow for a task farming approach (see section on task farming for details).

5.2.3 Selecting degrees of freedom

phonon_vib_free x y z
0 F F F
1 T F F
2 F T F
3 T T F
4 F F T
5 T F T
6 F T T
7 T T T

Table: Allowed options for keyword phonon_vib_free.

The input file allows the user to select only a subset of the complete vibrational degrees of freedom of the entire system,
as well as to specify different finite-displacement options for each (𝛼, 𝜅) pair. This is controlled through two keywords:
phonon_vib_free and phonon_exception_list.

phonon_vib_free is an integer parameter controlling the global default of which Cartesian directions are ‘switched
on’ for all ions. The options are listed in Table [table:free]. The default option is 7, corresponding to all three Cartesian
directions being switched on (i.e., all vibrational degrees of freedom are allowed).

phonon_exception_list is a block in which the user can list specific (𝛼, 𝜅) pairs with options differing from the
global defaults defined by phonon_vib_free, phonon_sampling, and phonon_finite_disp. An example of doing
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so is as follows:

phonon_vib_free 3
phonon_sampling 1
phonon_finite_disp 1.4e-1 bohr

%block phonon_exception_list
10 3 1 2 0.9
15 1 0 1 1.0
36 2 0 1 1.0
%endblock phonon_exception_list

Here, we have first defined the global defaults; phonon_vib_free 3 corresponds to only the x- and y-directions being
selected for the calculation, and the z-direction being switched off. Then, in the phonon_exception_list block, we
list three exceptions:

• displacement of ion 10 in the z-direction (3) is switched on (1), with a value of phonon_sampling of 2, and a
value of phonon_finite_disp of 0.9 × the global value (i.e., 1.26e-1 bohr);

• displacement of ion 15 in the x-direction (1) is switched off (0), with the last two parameters not being read;

• displacement of ion 36 in the y-direction (2) is switched off (0), with the last two parameters not being read.

5.2.4 Bulk crystal supercell calculations
Phonon calculations for crystalline systems can be performed in onetep using a supercell approach, with either a real-
space truncation of the force constants matrix, or a Slater-Koster style interpolation. The size of the supercell is chosen
by the user; obviously, larger supercells will produce more accurate results at arbitrary q points.

It is the responsability of the user to provide the correct supercell lattice vectors and atomic coordinates in the usual
way. Additionally, the supercell block must be specified to inform the phonon module that the system is a supercell
of bulk material; otherwise, it will be assumed to be a molecule. An example of doing so is as follows:

%block lattice_cart
ang
5.3938105 5.3938105 0.0000000
5.3938105 0.0000000 5.3938105
0.0000000 5.3938105 5.3938105
%endblock lattice_cart

%block positions_abs
ang
Si 0.000000000 0.000000000 0.000000000
Si 0.000000000 2.696905250 2.696905250
Si 2.696905250 0.000000000 2.696905250
Si 2.696905250 2.696905250 5.393810500
Si 2.696905250 2.696905250 0.000000000
Si 2.696905250 5.393810500 2.696905250
Si 5.393810500 2.696905250 2.696905250
Si 5.393810500 5.393810500 5.393810500
Si 1.348452625 1.348452625 1.348452625
Si 1.348452625 4.045357875 4.045357875
Si 4.045357875 1.348452625 4.045357875
Si 4.045357875 4.045357875 6.742263125
Si 4.045357875 4.045357875 1.348452625
Si 4.045357875 6.742263125 4.045357875

(continues on next page)
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(continued from previous page)

Si 6.742263125 4.045357875 4.045357875
Si 6.742263125 6.742263125 6.742263125
%endblock positions_abs

%block supercell
2 2 2
1
9
%endblock supercell

Within the supercell block, the first line gives the shape of the supercell (2×2×2), and subsequent lines list the ions
in the positions_abs block that belong to the ‘base’ unit cell (of course, this supercell is too small to give sensible
results for a phonon calculation, and is probably too small to run in onetep anyway; a 1000-atom cubic supercell of Si
gives excellent results however!)

When a supercell calculations is specified, only the ions within the unit cell are displaced, although the forces on all
ions in the system are used to calculate the elements of the dynamical matrix from Eq. eq:dynamical_mat. It is also
possible to specify phonon_vib_free and phonon_exception_list in a supercell calculation, although only the
ions listed in the supercell block can be included in the phonon_exception_list block.

5.2.5 Task farming
The most efficient way of performing a phonon calculation is by task farming, as the full force constants matrix is built
up from many perturbed-structure calculations, each of which is completely independent. This can be done with the
following steps:

1. Run phonon_farming_task 1 as a single job; this is essentially a standard single-point energy-and-force
onetep calculation. Find the line in the main output file which gives the Number of force constants needed
for the phonon calculation you have specified (this will be between 1 and 3𝑁 ).

2. Divide the total number of force constants that need to be calculated between the desired number of jobs. Pre-
pare the onetep input file for each job specifying phonon_farming_task 2 and a subset of the force constant
calculations in the phonon_disp_list block. Make sure every job has access to the files <seedname>.dkn
and <seedname>.tightbox_ngwfs obtained from the unperturbed calculation in the previous step.

3. Collect all the <seedname>.force_consts_<i> files and place them in the same directory. Finally, run
phonon_farming_task 3 as a single job, to construct the full force constants matrix and perform the post-
processing calculations.

5.2.6 Keywords
The phonon calculation is selected by specifying task phonon. All other keywords related to the module are optional.
They are:

• phonon_farming_task [Integer]
Select which stage to perform (as described in Sec. [sec:farm]). Can be either 1, 2, 3 for a single stage, or 0 for
all stages. Default is 0.

• phonon_sampling [Integer]
Finite-difference formula to use (see Eq. eq:fd). Default is 1.

• phonon_finite_disp [Physical]
Ionic displacement distance 𝑑. Default is 1.0e-1 bohr.

• phonon_fmax [Physical]
Maximum ionic force allowed in the unperturbed system. Default is 5.0e-3 ha/bohr.
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• phonon_energy_check [Logical]
Perform a sanity check that the total energy doesn’t decrease upon ionic displacement. Default is F.

• phonon_vib_free [Integer]
Default allowed vibrational degrees of freedom for all ions (see Sec. [sec:free] for details). Default is 7.

• phonon_exception_list [Block]
List of exceptions to the global defaults defined by phonon_vib_free, phonon_sampling, and
phonon_finite_disp (see Sec. [sec:free] for details). Default is unspecified.

• supercell [Block]
Definition of the supercell used for crystalline material (see Sec. [sec:supercell] for details). Default is
unspecified.

• phonon_disp_list [Block]
List of force constant calculations to perform for Stage 2. Note that the total number of force constant
calculations is given in the main output file in the line Number of force constants; this will be less than or
equal to 3𝑁 . The numbers listed in the phonon_disp_list block should go from 1 to this number; they can
only be equated to the label <i> if all 3𝑁 force constants are calculated. If unspecified, all displacements are
performed. Default is unspecified. Example:

%block phonon_disp_list
1
3
5
%endblock phonon_disp_list

• phonon_grid [Block]
Definition of the regular grid of q points used for the computation of thermodynamic quantities and the phonon
DOS. Default is 1 1 1 (i.e., Γ point only). Example:

%block phonon_grid
10 10 10
%endblock phonon_grid

• phonon_SK [Logical]
Use a Slater-Koster style interpolation for q points instead of a real-space cutoff of the force constants matrix
elements. Default is F.

• phonon_tmin [Physical]
Lower bound of the temperature range for the computation of thermodynamic quantities, expressed as an
energy (𝑘B𝑇 ). Default is 0.0 hartree.

• phonon_tmax [Physical]
Upper bound of the temperature range for the computation of thermodynamic quantities. Default is 2.0e-3
hartree (≃ 632 K).

• phonon_deltat [Physical]
Temperature step for the computation of thermodynamic quantities. Default is 1.5e-5 hartree (≃ 5 K).

• phonon_min_freq [Physical]
Minimum phonon frequency for the computation of thermodynamic quantities, expressed as an energy (~𝜔);
frequencies lower than this are discarded. Default is 3.6e-6 hartree (≃ 5 cm−1).

• phonon_DOS [Logical]
Calculate the phonon DOS and write to file. Default is T.

• phonon_DOS_min [Real]
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Lower bound of the phonon DOS range (in cm−1). Default is 0.0.

• phonon_DOS_max [Real]
Upper bound of the phonon DOS range (in cm−1). Default is 1000.0.

• phonon_DOS_delta [Real]
Frequency step for the phonon DOS calculation (in cm−1). Default is 10.0.

• phonon_qpoints [Block]
List of additional q points for which to calculate the phonon frequencies, in fractional coordinates of the
reciprocal unit cell vectors. For non-supercell calculations only the Γ point can be specified. Default is
unspecified. Example:

%block phonon_qpoints
0.0 0.0 0.0
0.0 0.0 0.1
0.0 0.0 0.2
0.0 0.0 0.3
0.0 0.0 0.4
0.0 0.0 0.5
%endblock phonon_qpoints

• phonon_write_eigenvecs [Logical]
Write the eigenvectors as well as the phonon frequencies to file for the additional q points. Default is F.

• phonon_animate_list [Block]
List of Γ-point modes (where 1 is the lowest) for which to write xyz animation files. Default is unspecified.
Example:

%block phonon_animate_list
2
6
33
34
%endblock phonon_animate_list

• phonon_animate_scale [Real]
Relative scale of the amplitude of the vibration in the xyz animation. Default is 1.0.

5.2.7 Additional notes
Phonon calculations are quite sensitive to the accuracy of the ionic forces calculated for the perturbed structures. There-
fore, it is advisable to make sure that the forces are well-converged with respect to the usual parameters: cut-off energy,
number and radius of NGWFs, and spatial cut-off of the density kernel.

Furthermore, it is also important to make sure that for a given set of parameters the forces are properly converged at
the end of the energy minimization procedure, and that the numerical noise is reduced to a minimum; the code will not
check this automatically, and the forces generally converge slower than the total energy. To ensure an accurate result,
therefore, the following values for the convergence threshold parameters are suggested:

• ngwf_threshold_orig 1.0e-7.

• lnv_threshold_orig 1.0e-11.
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6.1.1 NEB Method
The Nudged Elastic Band (NEB) method is a systematic approach to transition state searching. A brief overview will
be provided here; for a more detailed description see [Jonsson1998].

Overview

Tools such as geometry optimization make determining the properties and relative energies of products and reactants
relatively straightforward. Of equal importance to understanding a reaction or diffusion problem is the transition state
(TS) - the highest-energy point on the minimum energy path (MEP) connecting the reactant and product in configu-
ration space. Unfortunately determining the TS is not a simple local minimization problem, but instead it requires a
determination of the MEP from the set of paths that connect the reactant and product. Several approaches that attempt
to approximate the TS given a set of assumptions about the energy landscape exist, such as LST/QST. NEB attempts
to offer a systematic determination of the TS through a local optimization of the MEP from an initial guess.

Theory

An elastic band method connects the reactant and product with a chain of beads in configuration space connected to
their immediate neighbors with springs of natural length 0. This chain is then relaxed with the reactant and product
held fixed and each bead on the chain feeling the forces from the potential energy surface as well as the springs.

Unfortunately, this approach runs into two immediate issues. The spring force perpendicular to the path works to pull
the chain away from the correct MEP, leading to a poor approximation of the TS, and the force from the potential energy
surface tangent to the path pushes beads to lower energy areas, whereas the goal is to sample the highest-energy point
on the path. Varying the spring constant can reduce one issue while exacerbating the other and there is no systematic
way to sample the highest point of the correct MEP.

The nudged elastic band approach is to project out the problematic components of the spring and PES force, ‘nudging’
the chain back onto the MEP. That is, each bead feels only the component of the force due to the potential energy
surface perpendicular to the path tangent and that of the spring force parallel to the path tangent. The former relaxes
the chain onto the MEP and the latter evenly distributes the images along the path. Using this approach the beads will
lie strictly on the MEP regardless of bead count assuming an accurate approximation to the path tangent at each point.

149



ONETEP Documentation, Release 7.1.8

As with any local minimization, the final path depends on the initial guess and is not guaranteed to be the global MEP.
Care should be taken in complicated reactions or diffusions - in particular a reaction passing through several stable
intermediates might be broken into a number of separate NEB calculations. More control over the initial path guess
may be implemented in the future.

Fig. 6.1: Cartoon of a NEB path initialization by linear interpolation and final sampling of the MEP. Each image only
feels the component of the spring force parallel to the path tangent and the real force perpendicular to the path tangent.
Image source & copyright [Cordier2018].

Tangent Approximation

Because the MEP is approximated by a series of beads, the path tangent must be approximated. A number of valid ap-
proximations exist - ONETEP uses an improved-stability approximation described in [Henkelman2000]. This approach
reduces kinks in the path that arise in some systems and is generally stable. Equation (6.1) describes the tangent 𝜏𝑖
approximated at bead 𝑖with energy𝐸𝑖, where 𝜏+

𝑖 = R𝑖+1−R𝑖 and 𝜏−
𝑖 = R𝑖−R𝑖−1, in cases where the neighboring

beads’ energies make a strictly increasing or decreasing series. If that’s not the case, Equation (6.2) gives the tangent
approximation, where ∆𝑉 max

𝑖 = max (|𝑉𝑖+1 − 𝑉𝑖| , |𝑉𝑖 − 𝑉𝑖−1|) and ∆𝑉 min
𝑖 = min (|𝑉𝑖+1 − 𝑉𝑖| , |𝑉𝑖 − 𝑉𝑖−1|).

𝜏𝑖 =

{︃
𝜏+
𝑖 , 𝑉𝑖+1 > 𝑉𝑖 > 𝑉𝑖−1

𝜏−
𝑖 , 𝑉𝑖−1 > 𝑉𝑖 > 𝑉𝑖+1

(6.1)

𝜏𝑖 =

{︃
𝜏+
𝑖 𝑉

max
𝑖 + 𝜏−

𝑖 𝑉
min
𝑖 , 𝑉𝑖+1 > 𝑉𝑖−1

𝜏+
𝑖 𝑉

min
𝑖 + 𝜏−

𝑖 𝑉
max
𝑖 , 𝑉𝑖−1 > 𝑉𝑖+1

(6.2)

Climbing-Image NEB

NEB tries to ensure that the beads are equally spaced along the path. This doesn’t guarantee good sampling of the
transition state, which is the most important part of the path. The TS energy can be interpolated if there are enough
beads on the path, but the climbing image addition to NEB (CI-NEB) works to move a selected bead near the TS to
exactly sample the TS. Once enabled, the highest-energy bead doesn’t feel the NEB spring force and moves in a modified
potential energy surface, where the components perpendicular to the path are essentially mirrored. This transforms a
saddle point region of the PES into a basin with a minimum at the transition state. That bead is then minimized in
this potential and the rest of the chain in the normal way. This is generally useful when the MEP is being sampled
well, though it does make assumptions about the shape of the PES near the saddle point. More details can be found in
[Henkelman2000-2].
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6.1.2 Image-Parallel Implementation in ONETEP
Each NEB iteration each bead requires a local energy and force calculation, as well as knowledge of the locations and
relative energies of its neighbors for spring force calculation and tangent approximation. For this reason, and for other
simulations that involve multiple communicating but largely independent subsystems, an alternate running mode was
developed for Onetep that allows multiple simulations to exist in the same MPI world. Each simulation, or image, can
progress independently but special communicators have been set up to allow communication between them. In the case
of NEB, each Onetep image controls one bead in the chain.

Important to note is that when running in image-parallel mode the default communicator for things like comms opera-
tions is changed from mpi_comm_world to comms mod’s pub_image_comm, a communicator between all processes in
one Onetep image. comms mod’s pub_imroots_comm is a communicator between the root processes of each image,
allowing images to communicate and allowing tasks to give each image something different to do. Additionally, each
image opens its own new file {rootname}{image_num}.onetep to write stdout to, with the original stdout be-
ing available through image_comms mod’s orig_stdout. Each image similarly maintains its own set of restart files,
properties files, etc, and nothing special has to be done to restart image-parallel calculations.

Normally the number of MPI processes specified at runtime must be divisible by the number of images requested.
Advanced configuration allows images to be different sizes, in case a task needs to be able to perform calculations that
aren’t necessarily comparable in cost.

6.1.3 Commands
NEB Keywords

NEB can be enabled by setting task : tssearch and tssearch_method : neb in the ONETEP input file.
ONETEP must be executed with enough MPI processes to support the number of images requested. Several geometry
optimization keywords will apply to NEB as the chain optimization is threaded through the geometry optimizer.

The reactant is taken from the atomic positions specified in the input file. A product section must also be provided
through e.g. %block positions_abs_product. A guess intermediate can also be provided, in which case the NEB
chain will place beads on the linear interpolation from reactant to intermediate and intermediate to product. This can
be specified with e.g. %block positions_abs_intermediate.

Basic Usage

• num_images: n [Intermediate integer, default 1]. Defines the number of Onetep instances that should run in
the simulation and enables image-parallel mode. In NEB, this is also the number of beads in the chain.

• {reactant,product}_energy [Intermediate real physical, default N/A] and {reactant,
product}_rootname [Intermediate string, default NONE]. Both the reactant and product energies must
be known at the start of the calculation. The energy can be specified either as a raw total energy or as a rootname
from which Onetep can read the tightbox NGWF and density kernel (and, in EDFT, Hamiltonian) files from
a previous calculation, or they can be calculated from scratch if neither is specified. The reactant and product
energies needn’t be specified in the same way.

Additional Controls

• neb_ci_delay: n [Intermediate integer, default -1]. Defines the number of BFGS steps the chain should take
before enabling a climbing image. Negative numbers disable the climbing image entirely.

• neb_print_summary [Intermediate boolean, default .true.]. If .true., Onetep will print NEB convergence
information as well as a summary of the reduced reaction coordinate and relative energy of each bead after each
NEB step to the original stdout.
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Convergence

Currently the calculation is considered converged when each bead is individually converged. These tolerances are used
instead of the geomopt ones.

• tssearch_energy_tol [Expert real physical, default 1.0e-5 Ha]. Convergence tolerance on change in bead
energy in one NEB step.

• tssearch_force_tol [Expert real physical, default 0.005 Ha/bohr]. Convergence tolerance on max force
on any atom.

• tssearch_disp_tol [Expert real physical, default 0.01 bohr]. Convergence tolerance on displacement of
any atom in one NEB step.

Other Image-Parallel Keywords

• image_sizes [Expert string, default DEFAULT]. If specified in the input file, a string of the format i|j|k|l|m|.
.. can be used to individually size the images in an image-parallel run. The number of sections specified should
be equal the number of images in the run and the sum of the image sizes should be equal the number of MPI
processes specified at runtime.

[Jonsson1998] H. Jónsson, G. Mills, and K. W. Jacobsen. Chapter 16: Nudged elastic band method for finding minimum
energy paths of transitions, Classical and Quantum Dynamics in Condensed Phase Simulations Part II.

[Henkelman2000] G. Henkelman, and H. Jónsson. Improved tangent estimate in the nudged elastic band method for
finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000).

[Henkelman2000-2] G. Henkelman, B. P. Uberuaga, and H. Jónsson. A climbing image nudged elastic band method
for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901 (2000).

[Cordier2018] Copyright P. Cordier http://umet.univ-lille.fr/Projets/RheoMan/en/to-learn-more-about/
nudged-elastic-band.php Accessed 21 April 2018.
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7.1.1 What is being calculated?
The local density of states (LDOS) provides a description encompassing both the spatial and energetic distribution of
the single-particle eigenstates simultaneously. The angular momentum projected density of states (PDOS) decomposes
the density of states energetic distribution into angular momentum components. Both decompositions may be com-
bined into an LPDOS. The LDOS and PDOS can thus be two valuable sources of information for understanding and
interpreting electronic structure calculations.

In the local-orbital framework of ONETEP [Skylaris2005], both decompositions are achieved by first performing a di-
agonalisation of the Hamiltonian matrix in the NGWF basis. This is a post-processing step performed at the end of the
calculation, once NGWF and density kernel convergence have been achieved. While this comes with a𝑂(𝑁3) compu-
tational cost, the prefactor is low because the NGWF basis is generally quite small. Therefore, such a diagonalisation
remains fast up to quite large system sizes, particularly if a parallel eigensolver such as ScaLAPACK is used.

The generalised eigenproblem that needs to be solved to provide the eigenvalues and eigenvectors is:∑︁
𝛽

𝐻𝛼𝛽𝑀
𝛽
𝑛 = 𝜖𝑛

∑︁
𝛽

𝑆𝛼𝛽𝑀
𝛽
𝑛 (7.1)

The matrix 𝑀𝛽
𝑛 describes the eigenvectors, which take the form |𝜓𝑛⟩ =

∑︀
𝛽 |𝜑𝛽⟩𝑀

𝛽
𝑛. In ONETEP, Eq. (7.1) can be

solved using either the LAPACK routine DSYGVX or (preferably) the ScaLAPACK routine PDSYGVX, depending on
whether -DSCALAPACK has been specified at compile time, and ScaLAPACK libraries have been provided.
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The result is the eigenvalues {𝜖𝑛} and eigenvectors 𝑀𝛽
𝑛. From these, the total density of states can be obtained as

𝐷(𝜖) =
∑︁
𝑛

𝛿(𝜖− 𝜖𝑛) . (7.2)

In practice the delta function is replaced with a Gaussian with broadening 𝜎, typically of the order of 0.1 eV:

𝛿(𝜖− 𝜖𝑛) ≈
√︂

log(2)

𝜋𝜎2
* exp

(︂
− log(2)(𝜖− 𝜖𝑛)2

𝜋𝜎2

)︂
.

Local Density of States

The local density of states in a given region 𝐼 is calculated by projecting each eigenstate onto the local orbitals of region
𝐼 , as

𝐷𝐼(𝜖) =
∑︁
𝑛

𝛿(𝜖− 𝜖𝑛) ⟨𝜓𝑛|
∑︁
𝛼∈𝐼

(|𝜑𝛼⟩⟨𝜑𝛼|) |𝜓𝑛⟩. (7.3)

Here, the non-orthogonality of the NGWFs when used as projectors means that the ket must be contravariant. We
are therefore implicitly using the contravariant dual of the NGWF (as in DFT+U [O-Regan2011], [O-Regan2012]).
Fortunately, the functions |𝜑𝛼⟩ need not be explicitly constructed in real space: the relationship ⟨𝜑𝛼|𝜑𝛽⟩ = 𝛿𝛼𝛽 implies
that we can re-write Eq. (7.3) as:

𝐷𝐼(𝜖) =
∑︁
𝑛

𝛿(𝜖− 𝜖𝑛)
∑︁

𝛽,𝛾,𝛼∈𝐼

(𝑀†) 𝛾
𝑛 ⟨𝜑𝛾 | (|𝜑𝛼⟩⟨𝜑𝛼|) |𝜑𝛽⟩𝑀𝛽

𝑛

=
∑︁
𝑛

𝛿(𝜖− 𝜖𝑛)
∑︁
𝛼∈𝐼

(𝑀†) 𝛼
𝑛 (
∑︁
𝛽

𝑆𝛼𝛽𝑀
𝛽
𝑛)

What is therefore obtained is a series of functions 𝐷𝐼(𝜖) for each of the chosen regions 𝐼 , which may be the NGWFs
of a single atom, or those of a group of atom types.

Angular Momentum Projected Density of States

To calculate the PDOS, we need to insert an additional resolution of the identity into equation (7.4) using a basis of
angular momentum resolved functions on which to project our NGWFS, |𝜒𝑙,𝑚⟩:

𝐷𝑙,𝐼(𝜖) ≈
∑︁
𝑛

𝛿(𝜖− 𝜖𝑛)
∑︁
𝛼,𝑙∈𝐼

(𝑀†) 𝛼
𝑛

∑︁
𝑚∈𝑙

⟨𝜑𝛼|𝜒′
𝛼𝑙𝑚⟩

∑︁
𝑙′𝑚′

Λ𝑙𝑚,𝑙′𝑚′ ∑︁
𝛽

(︀
⟨𝜒′

𝑙′𝑚′ |𝜑𝛽⟩𝑀𝛽
𝑛

)︀
, (7.4)

where we need to include the overlap matrix of angular momentum resolved functions, Λ, since this basis is also
non-orthogonal.

We have considerable scope in which basis we choose for the angular momentum resolved functions. Effectively, this is
a set of spherical harmonics multiplied by some radial term. In ONETEP, we currently have two options implemented
for the radial term: either spherical waves, or pseudo-atomic functions, as used to initialise the NGWFs, before opti-
misation in the NGWF SCF loop. More details about the theory behind these options as well as tests and comparisons
can be found in our paper [Aarons2019].

7.1.2 Performing an LDOS Calculation
An LDOS calculation is performed as part of the optional post-processing activated using do_properties: T or
using task: PROPERTIES. To activate LDOS we then need to specify the Gaussian broadening, such as dos_smear
: 0.1 eV. The default value of dos_smear : -0.1 eV disables LDOS.

Then, we need to specify the groups of atom types. This is done via a block, with each line listing a group of atoms.
For example, in a benzene ring, we might use the following to find the contributions of the carbon and hydrogen atoms
respectively:
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%block species_ldos_groups
C
H

%endblock species_ldos_groups

A more complex example would be for a GaAs nanorod with hydrogen termination on the faces. If we wished to see
the LDOS varying over 5 layers, labelled 1-5, we could use:

%block species_ldos_groups
Ga1 As1 H1
Ga2 As2 H2
Ga3 As3 H3
Ga4 As4 H4
Ga5 As5 H5

%endblock species_ldos_groups

Examples of the use of LDOS analysis, including example plots, can be found in several recent papers employing
ONETEP [Avraam2011], [Avraam2012], [Hine2012].

7.1.3 Performing a PDOS Calculation
The default settings in ONETEP for PDOS calculations are to use the pseudo-atomic states as the angular momentum
resolved projection basis with a Löwdin orthogonalisation. For most applications, the spilling parameter associated with
this basis will be sufficiently small. PDOS calculations are enabled as part of the optional post-processing by writing
do_properties : T into the ONETEP input file, along with a Gaussian smearing width, such as dos_smear : 0.
1 eV and a maximum angular momentum in the angular momentum resolved projection basis, such as pdos_max_l
: 2 to include up to d-states (when using the default pseudo-atomic basis, this will also be limited by the maximum
angular momentum state in each species, as calculated by the pseudo-atomic solver).

Local PDOS (LPDOS) Calculations

If you intend to calculate an angular momentum projected DOS on a subset of atoms, this can be achieved by specifying
a block in the input file, in the same way as for LDOS. The block can be set up by using the species_pdos_groups
keyword. For example, in a benzene ring calculation, if you want to find the contributions to the PDOS coming from
solely carbon atoms and solely hydrogen atoms, you could write:

%block species_pdos_groups
C
H

%endblock species_pdos_groups

If you also want the combined contribution from carbon and hydrogen to each angular momentum channel, you should
add a line for this:

%block species_pdos_groups
C
H
C H

%endblock species_pdos_groups

This will calculate PDOS histogram data up to pdos_max_l for each line. As many or as few combinations of species
as you require can be calculated by adding extra lines.

If you instead want a specific subset of atoms of a particular species, this can be achieved easily by labelling this subset
differently to the others in its species. For example, if you have the following species specification:

7.1. Calculating the Local/Partial Density of States and Angular Momentum Projected Density of
States
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%block species
Pt Pt 78 9 9.0

%endblock species

%block species_atomic_set
Pt SOLVE conf=5d9 6s1 6p0

%endblock species_atomic_set

%block species_pot
Pt platinum.paw

%endblock species_pot

%block species_pdos_groups
Pt

%endblock species_pdos_groups

%block positions_abs
Pt 8.8292 12.2847 8.7330
Pt 9.2819 11.1839 11.1325

%endblock positions_abs

Then you may wish to duplicate the platinum species definitions to label a subset of the atoms in the positions_abs
block, as shown here for example:

%block species
Pt Pt 78 9 9.0
Pt1 Pt 78 9 9.0

%endblock species

%block species_atomic_set
Pt SOLVE conf=5d9 6s1 6p0
Pt1 SOLVE conf=5d9 6s1 6p0

%endblock species_atomic_set

%block species_pot
Pt platinum.paw
Pt1 platinum.paw

%endblock species_pot

%block species_pdos_groups
Pt
Pt1
Pt Pt1

%endblock species_pdos_groups

%block positions_abs
Pt 8.8292 12.2847 8.7330
Pt1 9.2819 11.1839 11.1325

%endblock positions_abs
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and hence calculate PDOS contributions for subsets of atoms of a single species.

Expert PDOS Options

Further options are available in the ONETEP PDOS functionality to control the quality of the projection. These will
be unneeded in most cases, but if, for instance, you are observing larger spilling parameters than your requirements
permit, you may wish to enable some of these options.

The most reliable way we have found to reduce the spilling parameter is to use a spherical-wave basis rather
than the pseudo-atomic basis as the angular momentum resolved projection basis. To do this in ONETEP, add
pdos_pseudoatomic : F to your input file. By default, this will create a set of contracted spherical waves by fitting
spherical waves to your converged NGWFs, via the contraction coefficients.

The spherical wave basis is contracted by default to reduce the memory requirements of the code. You may, however,
not see an improvement in the spilling parameter by using this set. To be certain of reducing the spilling parameter,
you should also opt to use the full, non-contracted spherical wave basis, by setting pdos_reduce_sws F in your input
file, along with an adequately large pdos_max_l. For pdos_max_l you can start by running with 2 and increase to 3 if
required. If you choose to take this approach, beware of the memory requirements, which can be up to 10 times greater.

If you choose to use a contracted set, then you almost certainly want to use the default fitting coefficients (fitted to NG-
WFs). These can be changed to unity by setting pdos_construct_basis : F, however this is not likely to improve
your results, and is likely to be removed in a future version of ONETEP due to it being mainly of use for debug-
ging purposes. To reduce the spilling parameter with the contracted set, we recommend increasing the pdos_max_l
parameter.

In specialised cases, you may also wish to not sum over the magnetic quantum number. This can be achieved by setting
pdos_sum_mag : F. This will give histogram data for every magnetic quantum number of every angular momentum
channel of each atom group.

Recommended Settings

The following table provides a set of recommended settings for calculating the PDOS in ONETEP:

Accuracy Cutoff energy (eV) NGWF radii (𝑎0) Basis
Low 700 8.0 Pseudo-atomic orbitals
Medium 800 10.0 Pseudo-atomic orbitals
High 1200 13.0 Fully uncontracted spherical waves

These settings were calibrated and tested with platinum nanoparticles and can be considered a starting point for your
own calculations.

Interpreting Outputs

ONETEPs PDOS outputs are written to several files as well as to stdout, which is itself usually redirected to the main
log/output file. The PDOS output to stdout will look something like the following (for an input file with 3 pdos_groups
and pdos_max_l=2):

================ Projected Density of States (pDOS) calculation ================

Constructing AM resolved functions ... done
Writing NGWF plot files in formats: ... done

Performing overlap integrals ... done

(continues on next page)
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(continued from previous page)

Computing pDOS weights ... done

All bands spilling parameter = 2.14 %
Occupancy-weighted spilling parameter = 0.30 %

=> Outputting data for OptaDOS <=

Writing pDOS weights to file "Pt3O.val_pdos_bin" ... done

Writing band gradients to file "Pt3O.val_dome_bin" ... done

Writing Castep output cell file to "Pt3O-out.cell" ... done

=> Computing Gaussian smeared pDOS <=
Writing "Pt3O_PDOS.txt" ... done

=> Computing Occupancy-weighted Gaussian smeared pDOS <=
Writing "Pt3O_occ_PDOS.txt" ... done
=> Band centres:

S band centre of group 1 from -24.409 eV upwards: -10.785237 eV
P band centre of group 1 from -24.409 eV upwards: -6.380437 eV
D band centre of group 1 from -25.000 eV upwards: -1.992329 eV
S band centre of group 2 from -24.409 eV upwards: -3.492322 eV
P band centre of group 2 from -24.409 eV upwards: -5.494682 eV
D band centre of group 2 from -25.000 eV upwards: -1.992329 eV
S band centre of group 3 from -24.409 eV upwards: -20.033099 eV
P band centre of group 3 from -24.409 eV upwards: -6.607392 eV
Band centres done. <=
=> Integrated number of electrons in each AM band:

S num electrons of group 1 from -24.409 eV upwards: 3.768881
P num electrons of group 1 from -24.409 eV upwards: 5.624424
D num electrons of group 1 from -25.000 eV upwards: 26.497489
S num electrons of group 2 from -24.409 eV upwards: 2.107161
P num electrons of group 2 from -24.409 eV upwards: 1.147191
D num electrons of group 2 from -25.000 eV upwards: 26.497489
S num electrons of group 3 from -24.409 eV upwards: 1.661719
P num electrons of group 3 from -24.409 eV upwards: 4.477233
Integrated number of electrons done. <=

================================================================================

First, we can see the spilling parameters – effectively how well the angular momentum resolved basis is able to represent
the NGWFs. A lower value is better; if you are running production calculations, you should want a value lower than a
few percent. If not, consider making some of the changes suggested in the expert options section above. The all-bands
value includes un-occupied bands as well as valence states, which will be the same as the occupancy-weighted version
unless you are using EDFT with a finite electronic temperature.

Following this are the files for use with OptaDOS. OptaDOS is a freely available piece of software for plotting various
DOS projections. If you intend to use it, then please follow the CASTEP section of the OptaDOS manual with these
files, as they are compatible.

The histogram files are then written, “*_PDOS.txt”. These also come in all-bands and occupancy weighted flavours (the
occupancy weighted variant is more reliable for a usual ground state calculation with ONETEP as the conduction states
are not well described. Only if you are doing LPDOS on the output of a ONETEP conduction calculation the occupancy
un-weighted LPDOS outputs will be meaningful). The order of columns is firstly the energy column, followed by the
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angular momentum component columns (i.e. s,p,d. . . ) for each pdos group. This can be plotted trivially with xmgrace,
or any other plotting tool.

Finally ONETEP reports the energy and occupancy weighted averages of the PDOS, so called-band centres, useful in
catalysis (e.g. the value “d-band centre” is a very useful descriptor about the ability of a metal surface to bind atomic
oxygen and other types of adsorbates) and the integrated number of electrons in each component. The d-band centre
and number of electrons in each band are calculated above a threshold. By default, this is set to -15 eV, which works
well for platinum nanoparticles, but this can be adjusted using the pdos_d_band_threshold keyword. The threshold
was introduced as d-orbital contributions occured at regions outside of the d-band, which can be seen in Figure 3a. of
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7.2 Linear response time-dependent density-functional theory (LR-
TDDFT)
Author

Tim Zuehlsdorff, Imperial College London

7.2.1 Linear Response TDDFT
The linear response TDDFT (LR-TDDFT) functionality in ONETEP allows the calculation of the low energy excited
states of a system in linear scaling effort. In contrast to time-evolution TDDFT, where the density matrix of the system
is propagated explicitly in time, LR-TDDFT recasts the problem of finding TDDFT excitation energies into an effective
non-hermitian eigenvalue equation of the form:(︂

A B
B A

)︂(︂
X⃗
Y⃗

)︂
= 𝜔

(︂
1 0
0 −1

)︂(︂
X⃗
Y⃗

)︂
(7.5)

where the elements of the block matrices A and B can be expressed in canonical Kohn-Sham representation as

𝐴𝑐𝑣,𝑐′𝑣′ = 𝛿𝑐,𝑐′𝛿𝑣,𝑣′(𝜖KS
𝑐 − 𝜖KS

𝑣 ) +𝐾𝑐𝑣,𝑐′𝑣′

𝐵𝑐𝑣,𝑐′𝑣′ = 𝐾𝑐𝑣,𝑣′𝑐′

Here, 𝑐 and 𝑣 denote Kohn-Sham conduction and valence states and K is the coupling matrix with elements given by

𝐾𝑐𝑣,𝑐′𝑣′ = 2

∫︁
d3𝑟d3𝑟′

[︃
1

|r − r′| +
𝛿2𝐸xc

𝛿𝜌(r)𝛿𝜌(r′)

⃒⃒⃒⃒
𝜌{0}

]︃
×𝜓KS*

𝑐 (r)𝜓KS
𝑣 (r)𝜓KS*

𝑣′ (r′)𝜓KS
𝑐′ (r′).

with 𝐸xc being the exchange-correlation energy. Its second derivative, evaluated at the ground-state density 𝜌{0} of the
system, is normally referred to as the exchange-correlation kernel.

The above equation can be understood as an effective 2-particle Hamiltonian consisting of a diagonal part of conduction-
valence eigenvalue differences and a coupling term 𝐾𝑐𝑣,𝑐′𝑣′ connecting individual Kohn-Sham excitations.
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In ONETEP, LR-TDDFT is implemented both in terms of the full TDDFT eigenvalue equation (Eqn. [full_tddft]) and
in the Tamm-Dancoff approximation, a commonly used simplification to the full non-hermitian eigenvalue equation,
where the off diagonal elements B are set to zero. The problem of calculating the TDDFT excitation energies thus
becomes equivalent to solving the hermitian eigenvalue equation

AX⃗ = 𝜔X⃗

The Tamm-Dancoff approximation violates time-reversal symmetry and oscillator strength sum rules and can blue-
shift strong peaks in the spectrum by up to 0.3 eV, however, dark states are typically left almost unaltered from their
corresponding states in the Tamm-Dancoff approximation.

In the ONETEP code, the Tamm-Dancoff eigenvalue equation is re-expressed in terms of two sets of NGWFs, one
optimised for the valence space (denoted as {𝜑𝛼}) and one optimised for a low energy subspace of the conduction
manifold (denoted as {𝜒𝛽}, see the documentation of the conduction NGWF optimiation functionality). Furthermore,
the eigenvalue equation is solved iteratively for the lowest few eigenvalues using a conjugate gradient method. In order
to do so we define the action q of operator A acting X⃗ in conduction-valence NGWF space as

(𝑞𝜒𝜑)𝛼𝛽 = (𝑃 {c}𝐻𝜒𝑃 {1} − 𝑃 {1}𝐻𝜑𝑃 {v})𝛼𝛽 + (𝑃 {c}𝑉
{1}𝜒𝜑

SCF 𝑃 {v})𝛼𝛽 . (7.6)

where H𝜒 and H𝜑 are the Hamiltonians in conduction and valence NGWF representation respectively, P{𝑐} and P{𝑣}

denote the conduction and valence density matrices and P{1} is the response density matrix, a representation of the
trial vector X⃗ in conduction-valence NGWF space. 𝑉 {1}

SCF is the first order response of the system due to the density
𝜌{1}(r) associated with P{1}. Under this redefinition of the action A in conduction-valence NGWF space, finding the
lowest 𝑁𝜔 excitation energies is equivalent to minimising

Ω =

𝑁𝜔∑︁
𝑖

𝜔𝑖 =

𝑁𝜔∑︁
𝑖

⎡⎣ Tr
[︁
P{1}†
𝑖 S𝜒q𝜒𝜑

𝑖 S𝜑
]︁

Tr
[︁
P{1}†

𝑖 S𝜒P{1}
𝑖 S𝜑

]︁
⎤⎦

with respect to
{︁

P{1}
𝑖

}︁
under the constraint

Tr
[︁
P{1}†
𝑖 S𝜒P{1}

𝑗 S𝜑
]︁

= 𝛿𝑖𝑗 . (7.7)

If all density matrices involved in the above expressions, ie. P{1}, P{𝑐} and P{𝑣} are truncated and thus become sparse,
the algorithm scales as 𝑂(𝑁) with system size for a fixed number of excitation energies 𝑁𝜔 and as 𝑂(𝑁2

𝜔) with the
number of excitation energies required.

A similar algorithm can be derived for the full TDDFT eigenvalue equation, where we make use of the change of
variables p = X⃗ + Y⃗ and q = X⃗− Y⃗. Each TDDFT excitation then has two effective density matrices, P{𝑝} and P{𝑞},
associated with it that have the same structure as P{1} in the Tamm-Dancoff approximation. The density matrices do
obey an updated orthonormality constraint of the form

1

2

(︁
Tr
[︁
P{𝑝}†
𝑖 S𝜒P{𝑞}

𝑗 S𝜑
]︁

+ Tr
[︁
P{𝑞}†
𝑖 S𝜒P{𝑝}

𝑗 S𝜑
]︁)︁

= 𝛿𝑖𝑗 (7.8)

and an analogous expression for the total energy Ω in full TDDFT can be derived.

7.2.2 Performing a LR-TDDFT calculation
The LR-TDDFT calculation in ONETEP is enabled by setting the task flag to TASK=LR_TDDFT. The LR-TDDFT
calculation mode reads in the density kernels and NGWFs of a converged ground state and conduction state calculation,
so the .dkn, .dkn_cond, .tightbox_ngwfs and .tightbox_ngwfs_cond files all need to be present. The most important
keywords in a TDDFT calculation are:

• lr_tddft_RPA: T/F.

160 Chapter 7. Spectroscopy and Transport



ONETEP Documentation, Release 7.1.8

Boolean, default lr_tddft_RPA=F. If set to T, the code performs a full TDDFT calculation without relying on
the simplified Tamm-Dancoff approximation.

• lr_tddft_num_states: n
Integer, default lr_tddft_num_states = 1.
The keyword specifies how many excitations we want to converge. If set to a positive integer n, the TDDFT
algorithm will converge the n lowest excitations of the system.

• lr_tddft_cg_threshold: x
Real, default lr_tddft_cg_threshold = 10−6.
The keyword specifies the convergence tolerance on the sum of the n TDDFT excitation energies. If the sum of
excitation energies changes by less than x in two consecutive iterations, the calculation is taken to be converged.

• lr_tddft_maxit_cg: n
Integer, default lr_tddft_maxit_cg = 60.
The maximum number of conjugate gradient iterations the algorithm will perform.

• lr_tddft_triplet: T/F
Boolean, default lr_tddft_triplet = F.
Flag that decides whether the lr_tddft_num_states = n states to be converged are singlet or triplet states.

• lr_tddft_write_kernels: T/F
Boolean, default lr_tddft_write_kernels = T.
If the flag is set to T, the TDDFT response density kernels are printed out at every conjugate gradient iteration.
These files are necessary to restart a LR_TDDFT calculation.

• lr_tddft_restart: T/F
Boolean, default lr_tddft_trestart = F.
If the flag is set to T, the algorithm reads in lr_tddft_num_states = n response density kernels in .dkn
format and uses them as initial trial vectors for a restarted LR_TDDFT calculation.

• lr_tddft_restart_from_TDA: T/F
Boolean, default lr_tddft_trestart_from_TDA = F.
If the flag is set to T and lr_tddft_RPA: T, the code will read in already converged density kernels

{︁
P{1}
𝑖

}︁
and use them as a starting guess for a full TDDFT calculation such that P{𝑝}

𝑖 = P{𝑞}
𝑖 = P{1}. In many cases,

the full TDDFT results are similar to the Tamm-Dancoff results and this strategy of starting the full TDDFT
calculation leads to a rapid convergence.

• lr_tddft_init_random T/F
Boolean, default lr_tddft_init_random T.
By default, the initial TDDFT eigenvector guesses are initialised to random matrices. This yields an unbiased
convergence of the TDDFT algorithm but can mean that one starts the optimisation relatively far away from the
minimum. If lr_tddft_init_random=F, the code instead computes the 𝑛 minimum energy pure Kohn-Sham
transitions in linear-scaling effort and initialises the 𝑛 TDDFT response density matrices to the pure
Kohn-Sham transition density matrices. In many small to medium sized systems this leads to initial states much
closer to the TDDFT minimum and rapid convergence. In large extended systems this can yield states that are
spurious charge transfer states that are not ideal, especially if a more advanced density matrix truncation
scheme is used. In this case it is possible to set the keyword lr_tddft_init_max_overlap T, in which, rather
than choosing the lowest Kohn-Sham transitions, the code picks the lowest few transitions that also have a
maximum overlap of electron and hole densities.

• lr_tddft_kernel_cutoff: x
Real, default lr_tddft_kernel_cutoff = 1000a0.
Keyword sets a truncation radius on all response density kernels in order to achieve linear scaling
computational effort with system size.
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While the LR_TDDFT calculation can be made to scale linearly for a fixed number of excitations converged, it should
be kept in mind that the algorithm needs to perform orthonormalisation procedures and thus scales as 𝑂(𝑁2) with
lr_tddft_num_states.

7.2.3 Truncation of the Response density matrix
To run a fully linear scaling TDDFT calculation the response density matrix has to be truncated by setting
lr_tddft_kernel_cutoff. This truncation introduces numerical errors into the calculation, which mainly mani-
fest themselves in the form that the response density matrices do no longer exactly obey a first order idempotency
constraint that is placed on them. The idempotency constraint can be written in form of an invariance equation:

P{1}′
= P{c}S𝜒P{1}S𝜑P{v} = P{1}

To measure the degree to which the invariance relation is violated we make use of a penalty functional𝑄
[︁
P{1}

]︁
given

by:

𝑄
[︁
P{1}

]︁
= Tr

[︂(︁
P{1}†S𝜒P{1}S𝜑 − P{1}′†S𝜒P{1}′

S𝜑
)︁2]︂

.

For truncated P{1}, 𝑄
[︁
P{1}

]︁
̸= 0 which can lead to problems in the convergence of the conjugate gradient algorithm.

In order to avoid these issues, the TDDFT routines perform the minimisation of the energy in an analogous form
to the LNV method in ground-state calculations: The auxiliary density kernel P{1}′

is used instead of P{1} for the
minimisation of Ω. While P{1}′

is much less sparse than P{1} it preserves idempotency to the same degree as the
conduction and valence density kernel, yielding a stabilised convergence.

However, should𝑄
[︁
P{1}

]︁
diverge significantly from 0 during the calculation, there are routines in place similar to the

kernel purification schemes in ground state DFT that force the kernel towards obeying its idempotency constraint. The
keyword controlling these routines are given below:

• lr_tddft_penalty_tol: x
Real, default lr_tddft_penalty_tol = 10−8.

Keyword sets a tolerance for the penalty functional. If 𝑄
[︁
P{1}

]︁
is larger than lr_tddft_penalty_tol the

algorithm will perform purification iterations in order to decrease the penalty value and force P{1} towards the
correct idempotency behaviour.

• lr_tddft_maxit_pen: n
Integer, default lr_tddft_maxit_pen = 20.
The maximum number purification iterations performed per conjugate gradient step.

7.2.4 More advanced TDDFT kernel truncation schemes
There are many situations where physical intuition allows one to specify a more sophisticated sparsity pattern than a
uniform spherical kernel cutoff on P{1} (or P{𝑝} and P{𝑞} for full TDDFT). For example, in pigment-protein
complexes the excitations of interest retain a relative localisation on the pigment and one would ideally converge these
states directly, without obtaining any spurious charge transfer states from the pigment to far away regions of the
protein, that can arise due to failures in semi-local exchange correlation functionals. This can be achieved by
introducing a new block into the input file of the form

%block species_tddft_kernel
label1 label 2 label3 ...
label5 ...
...

%endblock species_tddft_kernel
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where the labels refer to atom labels. As an example, consider a pigment protein complex, where the pigment atoms
are labelled H1, C1 etc. while the protein atoms are labelled H, C, etc. Then we can force the excitations of the
system to be fully localised on the pigment by including

%block species_tddft_kernel
C1 H1 ...

%endblock species_tddft_kernel

This has the effect of setting all elements of P{1} to zero that correspond to conduction or valence NGWFs centered
on atoms of the environment. In this way the electrostatic effects of the environment are treated fully quantum
mechanically, while no delocalisation into the protein is allowed. If one would like to introduce a coupling to the
environment but wants to suppress any charge transfer coupling between the pigment and its environment, it is
possible to specify

%block species_tddft_kernel
C1 H1 ...
C H ...

%endblock species_tddft_kernel

It is possible to specify an arbitrary number of subregions in the system in this way. It is also possible to list the same
species in different lines, allowing for charge transfer interactions between some atom types of two regions but not
others.

Rather than having the off-diagonal charge-transfer blocks defined in %block species_tddft_kernel set exactly
to zero, it is also possible to give these blocks a more realistic sparsity pattern, for example that of the overlap matrix.
While this process still suppresses any significant amount of charge transfer between TDDFT regions, it can be used
to allow overlapping NGWFs from different TDDFT regions to contribute to the TDDFT transition density. In order
to do so, set the block

%block species_tddft_ct
C1 H1 ...
C2 H2 ...

%endblock species_tddft_ct

and set lr_tddft_ct_length to a chosen cutoff length for the charge-transfer interaction between the specified
blocks. For example, if the off-diagonal blocks of the response density matrix (corresponding to charge-transfer
excitations between TDDFT regions) should have the same sparsity pattern as the overlap matrix, set
lr_tddft_ct_length to twice the NGWF localisation radius.
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7.2.5 Preconditioning
The TDDFT eigenvalue problem is generally ill-conditioned, which can lead to a relatively slow convergence. For this
reason, it is possible to precondition the eigenvalue problem, which is achieved by solving a linear system iteratively to a
certain tolerance at each conjugate gradient step. Solving the linear system only requires matrix-matrix multiplications
and is very cheap for small and medium sized systems, however, it can get more costly for very large systems, especially
when no kernel truncation is used. In these cases, it can be necessary to reduce the number of default iterations of the
preconditioner. The main keywords controlling the preconditioner are

• lr_tddft_precond: T/F
Boolean, default lr_tddft_precond = T.
Flag that decides whether the preconditioner is switched on or off.

• lr_tddft_precond_iter: n
Integer, default lr_tddft_precond_iter = 20.
Maximum number of iterations in the linear system solver applying the preconditioner.

• lr_tddft_precond_tol: x
Real, default lr_tddft_precond_tol = 10−8.
The tolerance to which the linear system is solved in the preconditioner. Choosing a large tolerance means that
the preconditioner is only applied approximately during each iteration.

7.2.6 Representation of the unoccupied subspace
In the LR_TDDFT method as implemented in ONETEP, the user has two options regarding the representation of the
unoccupied subspace. The first option is to define the active unoccupied subspace of the calculation to only contain
the Kohn-Sham states that were explicitly optimised in the COND calculation. The other is to make use of a projector
onto the entire unoccupied subspace, where we redefine the conduction density matrix as:

P{c} =

(︂
(S𝜒)

−1 − (S𝜒)
−1 S𝜒𝜑P{v}

(︁
S𝜒𝜑

)︁†
(S𝜒)

−1

)︂
.

The first option has the advantage that we only include states for which the NGWFs are well optimised, but has the
drawback that some excitations converge very slowly with the size of the unoccupied subspace and thus a good con-
vergence with the number of conduction states optimised is hard to reach. The second method implicitly includes the
entire unoccupied subspace (to the extent that it is representable by a small, localised NGWF representation), but has
the disadvantage that now states are included in the calculation for which the NGWFs are not optimised. Furthermore,
the density matrix defined above is no longer strictly idempotent, leading to violations of the idempotency condition and
thus a non-vanishing penalty functional 𝑄

[︁
P{1}

]︁
, requiring kernel purification iterations as described in the previous

section.

The problem of loss of idempotency can be avoided by using the joint NGWF set to represent the conduction space
when using the projector. While this increases the computational cost of the LR_TDDFT calculation by a factor of
2, it preserves the idempotency of P{c} and is the recommended option when using the projector onto the unoccupied
subspace.

The keywords controlling the use of the projector are

• lr_tddft_projector: T/F
Boolean, default lr_tddft_projector = T.
If the flag is set to T, the conduction density matrix P{c} is redefined to be a projector onto the entire
unoccupied subspace.

• lr_tddft_joint_set: T/F
Boolean, default lr_tddft_joint_set = T.
If the flag is set to T, the joint NGWF set is used to represent the conduction space in the LR_TDDFT
calculation.
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7.2.7 Calculations in implicit solvent
A TDDFT calculation in implicit solvent is performed in an analogous way to the implicit solvent calculation in com-
bination with a conduction optimisation (see the documentation of the conduction optimisation for further details). By
default, the implicit solvent only acts on the ground state of the system and thus influences the conduction and valence
Kohn-Sham states mixed into the TDDFT calculation. However, a screening of the response density due to a dynamic
dielectric constant is not included in the calculation. In order to activate dynamic screening effects in TDDFT, the
user can set the keyword lr_optical_permittivity to the effective dynamic dielectric constant 𝜖∞ of the system
in question.

7.2.8 Outputs
The LR_TDDFT calculation will produce a number of outputs. At the end of the calculation, the individual excitation
energies and oscillator strengths will be computed and printed in the main ONETEP output file. Furthermore, the ener-
gies and oscillator strengths are used to generate a excitation spectrum written to the textfile rootname.tddft_spectrum.
The peaks in the spectrum are Gaussians of a width controlled by lr_tddft_spectrum_smear. Furthermore, by
default, density cube files of the response density, the electron and the hole density for each excitation are printed out.
The LR_TDDFT code can also perform an analysis of individual excitations, where the response density matrix is
decomposed into dominant Kohn-Sham transitions. Since this analysis requires the Kohn-Sham eigenstates and thus a
diagonalisation of the Hamiltonian, it scales as 𝑂(𝑁3) and should not be performed for very large system sizes.

The keywords controlling these outputs are:

• lr_tddft_write_densities: T/F
Boolean, default lr_tddft_write_densities = T.
If the flag is set to T, the response density, electron density and hole density for each excitation is computed and
written into a .cube file.

• lr_tddft_analysis: T/F
Boolean, default lr_tddft_analysis = F.
If the flag is set to T, a full 𝑂(𝑁3) analysis of each TDDFT excitation is performed in which the response
density is decomposed into dominant Kohn-Sham transitions.

7.2.9 Good practices and common problems
• The quality of the TDDFT excitation energies critically depends on the representation of the conduction space

manifold. Any excitation that has a large contribution from an unoccupied state that is not explicitly optimised
in the COND calculation is not expected to be represented correctly in the LR_TDDFT calculation. In general
it is advisable to optimise as many conduction states as possible. However, high energy conduction states are
often very delocalised and only representable if the conduction NGWF radius is increased significantly, thus
leading to poor computational efficiency. In practice, there is a tradeoff between computational efficiency and
the representation of the conduction state manifold (see also the documentation on conduction state optimisation
on this issue). Generally, TDDFT excitations should be converged with respect to both the conduction NGWF
radius and the number of conduction states explicitly optimised.

• Since the ground state and conduction density kernels are used as projectors onto the occupied and unoccupied
subspace in LR_TDDFT, one often finds that the inner loop of the SINGLEPOINT and COND optimisation
has to be converged to a higher degree of accuracy to achieve well behaved TDDFT results. It is therefore
recommended to increase MAXIT_LNV and MINIT_LNV from their default value in the SINGLEPOINT and
COND calculation. If no density kernel cutoff is used, the penalty functional value in the LR_TDDFT calculation
should be vanishingly small. If the number increases significantly during a calculation or if the code begins to
perform penalty optimisation steps, that is a clear sign that the initial conduction and valence density kernels are
not converged well enough.

• In order to perform a LR_TDDFT calculation that scales fully linearly with system size, all density matrices
involved have to be sparse and thus a KERNEL_CUTOFF has to be set for both the SINGLEPOINT and COND
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calculation. Using a density matrix truncation on the conduction states can sometimes be difficult depending on
how the subspace of optimised conduction states is chosen and care has to be taken to prevent unphysical results.

• When running calculations in full linear scaling mode, the ground state and conduction density kernels are no
longer strictly idempotent, which means that the penalty functional in LR_TDDFT will no longer be strictly zero.
The code might perform penalty functional optimisation steps to keep the idempotency error small. However,
these idempotency corrections can cause the conjugate gradient algorithm to stagnate and can even cause the
energy to increase. If this happens, it is an indication that the minimum energy and maximum level of convergence
for this truncation of the density kernel has been reached.

• When placing a truncation onto the the response density kernels it should be kept in mind that this may cause the
optimisation to miss certain low energy excitations completely. Very long range charge-transfer type excitations
cannot be represented by a truncated response density kernel and will thus be missing from the spectrum of excita-
tions converged. However, well localised excitations should be unaffected. In a similar way, if the TDDFT kernel
is limited to a certain region, it should be checked whether increasing the region leads to a smooth convergence
of the energy of the localised state within the region.

7.2.10 Reference
For further background regarding the theory behind the LR_TDDFT method in ONETEP, as well as a number of
benchmark tests, see

• Linear-scaling time-dependent density-functional theory in the linear response formalism, T. J. Zuehlsdorff, N.
D. M. Hine, J. S. Spencer, N. M. Harrison, D. J. Riley, and P. D. Haynes, J. Chem. Phys. 139, 064104 (2013)

7.3 Electron Energy Loss Calculations
Author

Edward Tait, University of Cambridge

Author
Nicholas Hine, University of Warwick

Date
September 2015

Date
Updated and Converted by NDMH September 2022

7.3.1 Theory
Computation of Electron Energy Loss (EEL) spectra in the Kohn-Sham formal- ism relies on the application of Fermi’s
Golden Rule to compute the imaginary part of the dielectric function,

𝜖2(𝜔) =
1

Ω

∑︁
𝑐

∑︁
𝑖

|⟨𝜓𝑖| exp(𝑖r · q)|𝜓𝑐⟩|2𝛿(𝐸𝑖 − 𝐸𝑐 − 𝜔) ,

Here 𝜔 is the transition energy, Ω the unit cell volume, the 𝜓𝑖 are (all electron) conduction band states, the 𝜓𝑐 are
core states, with respective energies 𝐸𝑖 and 𝐸𝑐. r is the position operator (defined as the displacement from the
nucleus whose core electrons are being excited). The 𝛿-function conserves energy. ONETEP relies on the external tool
OptaDoS[1] for the computation of 𝜖2 and only needs to supply matrix elements in a compatible form. The rest of this
section discusses the calculation of these elements.
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Projector Augmented Wave

In common with many plane wave codes onetep uses pseudopotentials to increase computational efficiency. A draw-
back of pseudopotentials is poor representation of the all-electron Kohn-Sham wavefunction close to the nucleus, this
however is exactly the region in which the matrix elements used for EELS simulation are computed. To overcome
this obstacle the projector augmented wave (PAW) formalism of Blochl[2] is adopted, which permits reconstruction of
all-electron states 𝜓 (and thus matrix elements) from pseudo-wavefunctions ̃︀𝜓:

⟨𝜑𝛼|�̂�|𝑏⟩ = ⟨𝜑𝛼|�̂�|𝑏⟩⏟  ⏞  
Cartesian Grid

+
∑︁
𝑖

⟨𝜑𝛼|̃︀𝑝i⟩ (⟨𝜙i|�̂�|𝑏⟩ − ⟨̃︀𝜙i|�̂�|𝑏⟩)⏟  ⏞  
Radial Grids

(7.9)

This process is accomplished by decomposing the pseudo-wavefunction in the augmentation region into a sum of
pseudo partial waves, ̃︀𝜙𝑖, the weights in this sum are determined using the projectors ̃︀𝑝𝑖. These pseudo partial waves
are subtracted off and all electron partial waves, 𝜙𝑖, added in their place. Simply put, within the augmentation regions
(close to the nucleus) the pseudised part of pseudo-wavefunction is subtracted off and the all electron part is added
back on.

Several PAW data sets are freely available (subject to the caveat that they should be thoroughly tested for a specific
use case). onetep accepts PAW pseudopotentials in the abinit file format. Core wavefunctions, as produced by the
pseudopotential generator are also required, these are less frequently available for download, but your PAW library
should provide input files for a pseudopotential generator which can be used to produce core wavefunction data sets
(again in the abinit format).

Generation of Position-Core Kets

To calculate the PAW matrix elements we must compute terms of the form: ⟨ ̃︀𝜓|r|𝜓c⟩

As an intermediate we compute expressions of the form: ⟨𝜑𝛼|r|𝜓c⟩

with 𝜑𝛼 an NGWF. The integral implied by this bra-ket must be computed on the grid. The bra term, an NGWF, is
readily available in this form but the ket |𝜓c⟩ must be constructed.

A Fourier space method is used, as it was found to offer superior numerical performance and correctly treats periodic
systems without further modification. This method exploits the fact that differentiation in Fourier space is equivalent
to multiplication by the position vector in real space:

𝜓c(r) =

Gmax∑︁
G

exp(𝑖G · r)

→
Gmax∑︁
G

(∇G(𝜓c(G)) exp(𝑖G · r) =

Gmax∑︁
G

(∇G(𝜓c(G) exp(𝑖G · r))

−
Gmax∑︁
G

𝜓c(G)∇G exp(𝑖G · r)

= −
Gmax∑︁
G

𝑖r𝜓c(G) exp(𝑖G · r))

= −𝑖r𝜓c(r)

Conduction Optimisation

Core loss calculations rely on an accurate description of conduction band states, in onetep it is necessary to perform
a conduction optimisation calculation in order to obtain a second NGWF set and kernel which correctly represent the
conduction manifold. Detail of the process may be found in the document “Conduction NGWF optimisation and optical
absorption spectra in ONETEP”[3] and is published[4].

Two main parameters should be supplied: cond_energy_range which sets the energy window above the HOMO in
which conduction states will be optimised. The second parameter cond energy gap specifies the energy gap between
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the highest optimised state and the lowest un- optimised state, this parameter is used to prevent attempts to optimise
only part of a set of degenerate states

7.3.2 Practical Example
In this section we will discuss the procedure for running an EELS calculation on a toy system: silene (the silicon
equivalent of ethene). You will need to obtain PAW pseudopotentials for Silicon and Hydrogen and the associated core
wavefunction data for Silicon. The author used the JTH pseudopotentials[5], though can’t offer any guarantee of their
suitability for any particular use. A boilerplate input file for a onetep EELS calculation is provided in Appendix B.

This input file can also be downloaded from the tutorials section of the onetep site. There are a few differences between
this input and the one for a single point calculation:

• PAW is mandatory

• We specify a second species for the atom whose core electrons we’re exciting

• Because a conduction calculation is being performed we must provide a species cond block

• We must provide a species_core_wf block and every species must be listed there.

The input file can be run swiftly on a single node and should produce a large number of output files. Most of these
files are .cube’s of wavefunctions produced by default during the properties calculations. The files of interest are the
.elnes_bin files, which contain OptaDoS compatible matrix elements.

A little more setup is needed before we can run OptaDoS (using the silene example):

• A dummy castep silene-out.cell file must be produced, and it must contain a symmetry block

• By default two .elnes bin files are produced, one based on Kohn-Sham wavefunctions represented using only
the valence NGWFs (silene_val_grad.elnes_bin) and a second which makes use of the joint basis of va-
lence and conduction NGWFs (silene_joint_grad.elnes_bin)

• As per the discussion above, you should choose the latter and copy it to silene.elnes bin.

• A silene.bands file must be produced, this is best done by copying silene.joint bands to silene.bands.

• An OptaDoS input file, silene.odi is needed.

To assist in these tasks a utility script, prep_optados_eels, is provided in the utils folder of the onetep distribution.
Run it with the calculation seed name as its argument and the steps listed above will be completed automatically.

The .odi file produced should be regarded as a basic template, consult the OptaDoS documentation[6] if you wish to
use more advanced features. Note that at the moment only fixed broadening is supported by onetep. When you are
satisfied with your OptaDoS input file, execute OptaDoS with your calculation seed name as the argument. All being
well, you should see a .dat file which you can plot with your favorite tool. Individual edges are listed sequentially in
the file, so a little post processing with awk or python is needed to separate the edges for individual plotting

7.3.3 OptaDoS
The OptaDoS code provides a single tool to compute densities of states and optical spectra of various sorts. OptaDoS
provides a number of smearing schemes for evaluating integrals over the Brillouin Zone including fixed and adaptive
schemes. At present onetep only supports simple fixed broadening schemes. The prep optados eels utility script
provides a template .odi input file:

TASK : CORE

# Method OptaDoS should use to work out
# the Fermi energy in the material .
# the insulator method relies on electron
# counting and is best for the systems

(continues on next page)
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(continued from previous page)

# onetep is most commonly used to study .
EFERMI : insulator

# Smearing scheme and width
BROADENING : fixed
DOS_SPACING : 0.01

# Use an average of x , y and z components of
# the position vector matrix elements
CORE_GEOM : polycrystalline

# Parameters below control lifetime and
# instrument broadening
CORE_LAI_BROADENING : true
LAI_GAUSSIAN_WIDTH : 0.6
LAI_LORENTZIAN_WIDTH : 0.2
LAI_LORENTZIAN_SCALE : 0.1

7.3.4 References
[1] RJ Nicholls, AJ Morris, CJ Pickard, and JR Yates. Optados-a new tool for eels calculations. In Journal of Physics:
Conference Series, volume 371, page 012062. IOP Publishing, 2012.
[2] Peter E Blochl. Projector augmented-wave method. Physical Review B, 50(24):17953, 1994.
[3] Laura E. Ratcliff. Conduction NGWF optimisation and optical absorption spectra in onetep.
http://www2.tcm.phy.cam.ac.uk/onetep/pmwiki/ uploads/Main/Documentation/conduction.pdf, 2011. [Online;
accessed 22-Sept-2015].
[4] Laura E Ratcliff, Nicholas DM Hine, and Peter D Haynes. Calculating op- tical absorption spectra for large
systems using linear-scaling density func- tional theory. Physical Review B, 84(16):165131, 2011.
[5] Francois Jollet, Marc Torrent, and Natalie Holzwarth. Generation of projec- tor augmented-wave atomic data: A
71 element validated table in the XML format. Computer Physics Communications, 185(4):1246 – 1254, 2014.
[6] Andrew J. Morris, Rebecca J. Nicholls, Chris J. Pickard, and Jonathan R. Yates. OptaDoS user guide.
http://www.cmmp.ucl.ac.uk/~ajm/ optados/files/user_guide_1.0.pdf, 2014. [Online; accessed 22-Sept- 2015]

7.4 Electronic transport calculations
Author

Robert A. Bell, University of Cambridge (rab207@cam.ac.uk)

7.4.1 Introduction
This document describes the use of the electronic transport functionality that is implemented in the ONETEP code
[Bell2014]. The implementation computes the ballistic Landauer-Büttiker conductance at zero bias through a device
and associated properties using electronic structure derived from density functional theory (DFT). The calculation
proceeds as a post-processing step after a ground-state single-point calculation.

This document focuses on the practical aspects of setting up calculations; a detailed technical explanation of the method
can be found in [Bell2014]. For a detailed discussion of the Landauer-Büttiker formalism and conductance derived from
DFT see [DiVentra2008], [Datta1995].

I first briefly outline what is being calculated, I then give an example calculation and suitable input parameters, and
then finally a full input parameter listing is given.
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7.4.2 What is being calculated?
The transport calculation determines the ballistic conductance through a device. Current can flow between two leads
via the connection made by the central scattering region. We will refer to this geometry as the device geometry.

Under the Landauer formalism, the contribution to the conductance between two leads (indexed 𝑖 and 𝑗) from electrons
with energy 𝐸 is given by

𝐺𝑖𝑗(𝐸) =
2𝑒2

ℎ
𝑇𝑖𝑗(𝐸)

where 𝑇𝑖𝑗(𝐸) is the transmission function. The transmission function is the central quantity to the Landauer-Büttiker
conductance and is calculated using a Green’s function technique:

𝑇𝑖𝑗(𝐸) = tr
[︁
Γ𝑖(𝐸) 𝐺d(𝐸) Γ𝑗(𝐸) 𝐺†

d(𝐸)
]︁
, (7.10)

𝐺d(𝐸) =
[︀
(𝐸 + 𝑖𝜂)𝑆d −𝐻d − Σ(𝐸)

]︀−1
, (7.11)

where𝐻d, 𝑆d the Hamiltonian and overlap matrices for the device, and 𝜂 is an infinitessimal positive energy that selects
the retarded response of the Green’s function 𝐺d. The interaction with the semi-infinite leads accounted for through
the lead self-energies Σ𝑗 , with Σ =

∑︀
𝑗 Σ𝑗 . The coupling matrices are defined as Γ𝑗 = 𝑖(Σ𝑗 − Σ†

𝑗).

From the Green’s function, one may also calculate the density of states within the device region as

𝒩 (𝐸) = − 1

𝜋
Imtr

[︀
𝐺d(𝐸)𝑆d

]︀
.

Further post processing steps may be performed to determine the eigenchannels. [Bell2014], [Paulsson2007]

7.4.3 Building the device
The principal quantities required in Eqns. (7.10) and (7.11) are the device Hamiltonian and overlap matrices, and the
lead self energies. The approach adopted in this implementation is to extract these matrix elements from the ground-
state electronic structure obtained after a standard single-point calculation. This approach corresponds to a non-self
consistent calculation of the transmission spectrum and device electronic structure. Note that this procedure differs
from self consistent approaches, such as e.g. [Brandbyge2002], where the open boundary conditions of the leads are
treated explicitly. At zero bias, however, both methods produce equivalent results yet the non-self consistent approach
is often far less computationally expensive.

A detailed description of the matrix element extraction procedure, as implemented in the ONETEP code, is given in
[Bell2014] which should be referred to in the first instance. Summarising briefly, to calculate the transmission through
any device geometry the user must construct another auxilliary simulation structure that contains this device. The only
electronic structure that is calculated is that of the auxilliary simulation geometry.

The structure of the auxilliary simulation geometry must take a specific form, consisting of the central region that
connects the leads and a bulk-like region for each lead. Each lead region must have a local electronic structure that
is bulk-like, and be large enough that it contains at least two principal layers of the bulk lead structure.1 The device
geometry is then defined as all the atoms contained within the central region and the two lead principal layers for each
lead.

For a device connecting two leads, the device Hamiltonian then looks like

𝐻d =

⎛⎜⎜⎜⎜⎜⎝
h00,𝐿 h0,𝐿 · · ·
h†
01,𝐿 h00,𝐿 h𝐿𝐶 · ·
· h†

𝐿𝐶 h𝐶 h𝐶𝑅 ·
· · h†

𝐶𝑅 h00,𝑅 h01,𝑅

· · · h†
01,𝑅 h00,𝑅

⎞⎟⎟⎟⎟⎟⎠
1 A lead principal layer is defined as the minimum number of primitive unit cells for that lead such that Hamiltonian and overlap matrix elements

between atoms in non-adjacent principal layers are exactly zero. This is guaranteed to be true if the periodic length of the principal layer is larger
than twice the maximum NGWF radius.
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whereh00,𝐿 is the on-site Hamiltonian block for the left lead principal layer, h01,𝐿 is the coupling Hamiltonian between
principal layers, h𝐿𝐶 is the coupling block between the left lead principal layer and the central region, and h𝐶 is the
on-site block for the central region. As a result of the localisation of the NGWFs the device Hamiltonian takes the
block tri-diagonal form, with zero matrix blocks denoted by a dot. An equivalent form is found for the device overlap
matrix.

The lead self energies are computed using the h00,𝐿,h01,𝐿 blocks via the method of Ref. [Lopez-Sancho1985]. Note
that these blocks are contained within the device Hamiltonian 𝐻d.

The device matrix elements are extracted from the electronic structure of the auxilliary simulation geometry. This
procedure is entirely automated, however, and the user need only supply a list of atoms that define the device, and the
subsets of these atoms that form the two principal layers for each lead. i.e. for an 𝑛-lead device, the user must define
2𝑛+ 1 sets of atoms.

A single limitation of the implementation is that the two principal layers of any lead must be the exact same structure with
atoms in the same relative ordering. This ensures that the lead self energies are computed correctly. The implementation
will not do this automatically, however a check is performed to ensure that it is true before the calculation is started.

For a more detailed discussion of the procedure for extracting matrix elements see [Bell2014].

7.4.4 Setting up a calculation
The best way to explain how to set up an input is through an example, and here I give an explanation of the parameters
required to calculation the transmission between two semi-infinite organic wires. Specifically, I will explain the setup
for calculating the tunnelling current between a polyacetylene wire and polyyne wire where each wire is semi-infinite
and terminated with a hydrogen atom. I will, however, assume that the user knows how to successfully converge the
standard ONETEP single-point calculation.

A suitable auxiliary simulation geometry is shown in schematic form in Fig. 7.1, consisting of molecular fragments of
the polyacetylene and polyyne wires located in vacuum. This entire geometry contains 52 atoms. I will assume that
these atoms are ordered in the input file by their position from left to right.

Suppose that I wish to calculate the transmission spectrum in a ±2𝑒𝑉 window about the Fermi energy with a resolution
of 0.01𝑒𝑉 . The transport specific input parameters are as follows:

etrans_lcr : T
etrans_bulk : T
etrans_emin : -2.0 eV
etrans_emax : 2.0 eV
etrans_enum : 401
etrans_calculate_lead_mu : T

%block etrans_setup
10 47

%endblock etrans_setup

%block etrans_leads
10 17 18 25 unit_cells=2
44 47 40 43 unit_cells=2

%endblock etrans_leads

! rest of input file...

The first six lines indicate that we wish to calculate the transmission between the two leads (the LCR transmision, see
[Bell2014]), and the maximum transmission that could be injected by each lead (the bulk transmission), and the energy
range the calculation will be performed over. I am also indicating that I want to calculate the lead band structures.
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The first block after these six lines is the etrans_setup block which states that all atoms between atom 10 and 47
(inclusive, and in the order found in the input file) are defined as the device geometry. This region is given by the
long-dashed box in . Atoms outside this set will not be included in the transmission calculation, but will be used when
calculating the ground-state electronic structure.

The final block is the etrans_leads block which gives the subset of these device atoms that define the two principal
layers for each lead. Each lead is given on a separate line, with the first pair of indices defining the principal layer furthest
from the central region, and the second pair the principal layer closest to the central region. Note that this ordering of
the two principal layers is important. Finally, I have indicated that each principal layer is in fact two primitive unit cells
of the lead structure by using unit_cells=2. This tells ONETEP to symmetrise the lead matrix elements to reflect
this periodicity. The atoms contained within each principal layer are indicated in by dotted boxes.

This choice of auxilliary simulation geometry tries to ensure that the lead principal layers are sufficiently far from the
ends of the molecular fragments that the local electronic structure within the lead is bulk-like. This has required the
use of buffer atoms (atoms 1–9 and 48–52) that are not included in the transport calculation. Some buffer has also
been used between the principal layers and the central tunnelling gap (atoms 26–34 and 35–39) for the same reason.
In practice, the size of this buffer is probably too small and the lead principal layers will not be well converged to the
bulk. This can be tested by comparing the band structures of each lead to the corresponding bulk band structure for
that lead, which can be calculated separately. If the lead band structure is not converged, the size of the buffer region
should be increased.

Fig. 7.1: A possible auxilliary simulation geometry for calculating the tunnelling transmission between a polyacetylene
wire and a polyyne wire. The atoms appear ordered in the input file by their position from left to right.

7.4.5 Computational scaling
The dominant computationally-intensive task in the transport routines is the computing of the device Green’s function.
This calculation is performed using an efficient block tri-diagonal Gaussian-elimination algorithm [Petersen2008]. This
algorithm results in memory usage and operation counts that scale linearly in the number of atoms. The pre-factor to
this scaling depends on the precise geometry of the device: the more one-dimensional a device (i.e. the fewer NGWFs
that overlap), the lower this pre-factor.

7.4.6 Information on parallelisation
The calculation of transmission coefficients is parallelised over the energy points, with each MPI process performing
the calculation in serial. No internal communications are necessary making the routines scale perfectly with the number
of MPI processes. However, as all matrices must be replicated on each MPI process, the memory requirements can
be large. On entering the transport routines but prior to starting the calculation, an estimate of the additional memory
required by the transport routines is printed. Note that this estimate does not include the memory required by the rest
of the ONETEP routines.

Parallelisation using OpenMP threading is not currently available. However, if the code is linked against Intel’s Math
Kernel Library (MKL), the linear algebra routines can make use of multi-threading within this library. To do this, the
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flag -DMKLOMP must be included during compilation, and the number of threads can be set from the input file using
threads_num_mkl.

The calculation of the eigenchannels can only be parallelised if linking against the ScaLAPACK library to make use of
parallel dense algebra. To enable this, the flag -DSCALAPACK must be included at compilation.

7.4.7 Calculations using the joint NGWF basis
Transmission calculations using the joint (valence + conduction) NGWF basis set have often been found to be numeri-
cally unstable and produce qualitively incorrect results when compared to calculations using the valence NGWF basis
alone. This is a result of ill-conditioning of the joint basis when the valence and conduction NGWFs are very similar
in character. This is a known issue, however there is currently no fix.

For some systems it has been found that the valence NGWFs alone are capable of describing low-energy conduction
states with good accuracy, and therefore the joint basis is not needed. It is advised that the valence basis is used in the
first instance.

If you are certain that the joint basis is required, then proceed with caution and always compare the results generated
with the joint basis to those generated using the valence basis. For energies below the Fermi energy, the two calculations
should coincide. If they do not, or if errors (e.g. complaining about computing the transfer matrix/self energy, or lead
band structures) are found then it may not be possible to use the joint basis.

If using the joint NGWF basis, all output files have .joint prepended to the extension.

7.4.8 Warnings and fixing errors
A useful check is to ensure that the lead band structure is as expected, and that the lead occupancy is correct. It is also
useful to check the lead/device .xyz files to ensure that the leads have the expected geometry.

The following are the main warning messages that may be encountered, and how they may be tackled.

Inversion of (eS-H)_lcr failed

Cause: Failed to calculate the Green’s function as it is singular at this energy. This can happen if
etrans_ecmplx is too small, or if localised states are present near this energy.
Severity: Low
Fix: It is safe to ignore this warning; the transmission coefficients and associated values are not written to file.
If it occurs over a wide energy range, or in an energy range of interest, try increasing etrans_ecmplx.

Warning in compute_transfer: Failed to compute transfer matrix.

Cause: Failed to compute the lead self energy. This can happen if etrans_ecmplx is too small, or if localised
states are present near this energy.
Severity: Low
Fix: It is safe to ignore this warning; the transmission coefficients and associated values are not written to file.
If it occurs over a wide energy range, or in an energy range of interest, try increasing etrans_ecmplx. If using
the joint NGWF basis, this may indicate that the basis is ill-conditioned and that the calculation is numerically
unstable.

Lead electronic occupancy is significantly different ...

Cause: Large discrepancy between the ionic and electronic charge in the lead. Likely due to under-converged
buffer region between this lead and the scattering region.
Severity: high
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Fix: Check that the lead band structure is what is expected. Increase buffer region between the lead and the
scattering region. Check the ground state DFT calculation is converged and that the density kernel occupancies
are 0 or 1 (if using the default LNV algorithm).

Unable to determine lead potential for lead ...

Cause: lead potential calculation for this lead failed: could not determine the lead band structure. This may
indicate that the leads have been defined incorrectly. Check the lead structure.
Severity: possibly high
Fix: Check the lead structure. Check the matrix elements contained in the lead .hsm output file are resonable,
that the main weight is along the matrix diagonal and that the values are sensible. If using joint NGWF basis,
try using the valence basis only (task = properties not properties_cond). The calculation will attempt
to continue, but check carefully the results are as expected.

7.4.9 Full input parameter description
Main parameters

etrans_lcr: T/F [Logical, default etrans_lcr: F ]

Calculate the transmission spectrum between all pairs of leads in the system.

etrans_bulk: T/F [Logical, default etrans_bulk: F ]

Calculate the bulk transmission spectrum for the leads.

etrans_setup: [block]

%block etrans_setup

start end

%endblock etrans_setup

The block defining the atoms to be used in the transport calculation. start/end are integers giving the
indices (from the input file) of the first/last atoms to be included as part of the system. All atoms between
start and end are used in the calculation; atoms outside this range are buffer regions and ignored. The
atoms consituting the leads must be contained within this region.

etrans_leads: [block]

%block etrans_leads

start0 end0 start1 end1

start0 end0 start1 end1 unit_cells=<n> file=<lead2.hsm>

...

%endblock etrans_leads

The block defining the atoms to be used as the leads. Each line defines a new lead. start0/end0 are
integers giving the indices (from the input file) of the first/last atoms of the lead principal layer farthest
from the central region; start1/end1 are integers giving the indices of the first/last atom of the
principal later closest to the central region.
The first principal layer geometry must be a periodic repeat of the lead geometry (i.e. same number of
atoms, in the same relative ordering in the input file).
For each lead, two optional tags can be defined. The option unit_cells=<n> forces the translational
symmetry of the principal layer matrix elements, where n is the number of primitive unit cells in the
principal layer. The option file=<lead1.hsm> allows for the lead matrix elements to be read in from a
.hsm file. Reading in matrix elements is generally unnecessary, however it may be used effectively by
taking the .hsm of a separate pristine/bulk transport calculation to ensure that the matrix elements are
exactly at their bulk values. The positions and ordering of atoms in the lead principal layers in both
calculations must be identical: this is not checked in the calculation.
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etrans_enum: n [Integer, default etrans_enum: 50]

Number of transmission energy points calculated for. Energies are distributed uniformly.

etrans_emax : 𝐸max [Physical, default etrans_emax: -0.2 Hartree]

The maximum energy above the reference energy transmission is calculated for.

etrans_emin : 𝐸min [Physical, default etrans_emin: 0.2 Hartree]

The minimum energy below the reference energy transmission is calculated for.

etrans_eref_method: LEADS|REFERENCE|DIAG [String, default etrans_eref_method: LEADS]

The method used to determine the reference energy 𝐸ref for the transmission calculation.
If etrans_eref_method: LEADS, the reference energy is set as the average lead chemical potential.
If etrans_eref_method: DIAG, the reference energy is set as the Fermi energy of the original DFT
system.
If etrans_eref_method: REFERENCE, the reference energy is set with etrans_eref.
If unset, this will be determined by calculating the average chemical potential of the leads, or if that
calculation fails, the Fermi energy of the original DFT system will be used.

etrans_eref : 𝐸ref [Physical, default etrans_eref: Determined automatically]

Reference energy around which the transmission will be calculated. Energies are distributed uniformly in
range 𝐸ref + 𝐸min ≤ 𝐸 ≤ 𝐸ref + 𝐸max.
This value is only used if etrans_eref_method : REFERENCE, otherwise it is determined
automatically by the method given by etrans_eref_method.

etrans_num_eigchan : 𝑛chan [Integer, default etrans_num_eigchan: 0]

The number of eigenchannel transmissions calculated. The default does not decompose into
eigenchannel transmissions.

etrans_plot_eigchan : T/F [Logical, default etrans_plot_eigchan: F]

Whether to plot the transmission eigenchannels of the LCR system.

etrans_plot_eigchan_energies : [block]

%block etrans_plot_eigchan_energies

{Ha|eV} ! optional energy unit

𝐸1

𝐸2

...

%endblock etrans_plot_eigchan_energies

The energies at which the eigenchannels are calculated and plotted. The first line may, optionally, define
the energy unit; if undefined, the energy unit is Hartree.
Plotting the eigenchannels uses an algorithm that scales with the cube of the number of atoms in the LCR
system. Compiling with the ScaLAPACK library is strongly recommended to reduce memory
requirements.

etrans_write_xyz : T/F [Logical, default etrans_write_xyz : T]

Whether to write, separately, the lead and LCR geometries to file in the .xyz file format. This is useful for
ensuring that the correct atoms have been chosen for the leads/LCR region.
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Tweaking/optional parameters

etrans_ecmplx : 𝜂 [Physical, default etrans_ecmplx: 1e-6 Hartree]

The small complex energy added to calculate the retarded Green’s function.
Ideally this should be infinitesimally small, however too small values create numerical instabilities.
Large values improve numerical stability, but creates artificial scattering, reducing transmission.

etrans_calculate_lead_mu : T/F [Logical, default etrans_calculate_lead_mu: T]

Determine the chemical potential of the leads using a tight-binding approach. If etrans_eref is unset,
the average lead chemical potential will be used as the reference energy. The band structure for each lead
is saved to file basename_lead<nn>.bands.

etrans_num_lead_kpoints : 𝑛𝑘 [Integer, default etrans_num_lead_kpoints: 32]

The number of lead band structure 𝑘-points sampled to determine the lead chemical potential. The
𝑘-points are distributed uniformly between Γ and 𝑋 .

etrans_same_leads : T/F [Logical, default etrans_same_leads: F]

Reuse the self energy from one lead for all leads. If all leads are identical, this may lead to a small
computational saving. The saving is typically negligible however.

etrans_write_hs : T/F [Logical, default etrans_write_hs: F]

Write the lead Hamiltonian and overlap matrices to disk.

etrans_lead_disp_tol : ∆𝑟 [Physical, default etrans_lead_disp_tol : 1.0 bohr]

The geometries of each lead and corresponding first principal layer should be identical; this parameter
determines how strictly this is enforced. This should only be done if you are clear of the consequences.
This may be useful in the case that the lead unit cell is much larger than the NGWF radius. If the distance
between the lead and the first principal layer furthest from the lead is much larger than 2 NGWF radii,
these atoms do not directly influence the non-zero matrix elements between the principal layer and the
lead, and the coupling matrix ℎ𝐿 is (approximately) independent of the structure of these atoms.
Therefore, it may be possible to use a much smaller buffer region between the lead and the first principal
layer by including part of the first principal layer in that buffer. The first principal layer and lead geometry
need not be identical, however both regions must contain the same number of atoms and orbitals.

For each lead, the translation vector between the 𝑖𝑡ℎ atoms of the lead and first principal layer is
calculated: R𝑖 = r𝑖,lead − r𝑖,PL. If the geometries of the lead and first principal layer are identical, all of
these translation vectors are identical. The maximum allowed difference between these displacement
vectors is ∆𝑟 > |R𝑖 −R𝑗 |.
If the lead crosses the supercell boundary, this check will fail. This can be overridden by increasing ∆𝑟
to some very large value.

etrans_lead_size_check : T/F [Logical, default etrans_lead_size_check: T]

If true, a check is performed to ensure that each lead forms complete principal layer. The run will abort if
the periodic length of the lead unit cells, as defined in the input file, are smaller than twice the maximum
NGWF radius of the species in that lead.
Turning off this check is not advised as the lead band structure and self energies can be inaccurate. This
can also be a problem in situations where the left lead can interact with the principal layer of the right
lead, allowing current to flow between the leads in the wrong direction, bypassing the central scattering
region.

etrans_seed_lead [Integer, default etrans_seed_lead: 1]
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The lead used to seed the block tri-diagonal partitioning. This should only be relevant for devices with
more than two leads where one lead is much larger than the other leads.

threads_num_mkl [Integer, default threads_num_mkl: 1]

If the code is linked against Intel’s Math Kernel Library (MKL), this defines the number of threads used
in the linear algebra routines. The flag -DMKLOMP must be set during compilation to enable this
parameter, otherwise it is ignored.

7.4.10 Output file description
Output files contain self-explanatory headers for each column. For spin polarised calculations, a separate file is out-
putted for each spin channel.

basename_LCR.TRC

The LCR transmission coefficients between different pairs of leads of the system.

basename_LCR_channels_lead<nn>.TRC

The LCR transmission coefficients decomposed into eigenchannels. The lead number defines which lead
acts as the source.

basename_LCR_E<nn>_lead<mm>_chan<ll>_{real\|imag}.cube

The plotted LCR eigenchannel. 𝑛𝑛 is the the energy index from %block
etrans_plot_eigchan_energies; 𝑚𝑚 is the lead that acts as the source; 𝑙𝑙 is the eigenchannel
number. The real and imaginary part are printed separately.

basename_BULK.TRC

The bulk transmission coefficients for each lead of the system.

basename_LCR.DOS

The density of states for the LCR system.

basename_BULK.DOS

The density of states for each lead of the system.

basename_lead<nn>.bands

Bandstructure of the lead in the .bands format. The number of 𝑘-points is set with
etrans_num_lead_kpoints.

basename_device.xyz basename_lead<nn>.xyz

The geometries of the device and leads in .xyz file format.

basename_lead<nn>.hsm

The lead matrix elements in Fortran (unformatted) binary format. Note that all energies are in Hartree. It
is planned, but currently not possible, to be able to access the device matrix elements. Please contact the
developers if you are interested in using this functionality. The format of this file is

character(len=*) :: block_type ! always lead
character(len=*) :: ham_type ! valence or joint
integer :: nspin ! number of spin channels
integer :: orbs(4) ! NGWF indices corresponding

! to the atoms defined
! in block_etrans_leads

integer :: norb ! matrix sizes
(continues on next page)
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real(kind=8) :: eref ! the lead chemical potential

real(kind=8) :: h00(norb,norb,nspin)
real(kind=8) :: h01(norb,norb,nspin)
real(kind=8) :: s00(norb,norb)
real(kind=8) :: s01(norb,norb)

[Bell2014] R.A. Bell, S.M.-M. Dubois, M.C. Payne, A. A. Mostofi, in preparation (2014)

[DiVentra2008] M. Di Ventra, Electrical Transport in Nanoscale Systems, (Cambridge University Press, Cambridge
2008)

[Datta1995] S. Datta, Electronic Transport in Mesoscopic System, 2nd ed. (Cambridge University Press, Cambridge
1995)

[Paulsson2007] M. Paulsson, M. Brandbyge, Phys. Rev. B. 76 115117 (2007)

[Lopez-Sancho1985] M.P. Lopez-Sancho, J.M. Lopez-Sancho, J. Rubio, J. Phys. F: Met. Phys. 15, 851 (1985)

[Petersen2008] D.E. Petersen et al., J. Comp. Phys 227, 3174 (2008)

7.5 Bandstructure (spectral-function) unfolding
Author

Gabriel Constantinescu, University of Cambridge

As described in the Supplementary Information in the work of Constantinescu and Hine [Constantinescu2015],
spectral function unfolding is the means through which one can study the bandstructure of the primitive cell from
simulations involving (often complicated) supercells. For details theoretical descriptions, one should visit the
aforementioned article [Constantinescu2015].
In this documentation, I will give a short explanation of the procedures required to unfold the bandstructure in a
ONETEP “Properties” calculation. We strongly suggest that one reads the entire document carefully before
attempting any calculations, as there are some stringent requirements along the way. Essentially, all one will need is
the following group of keywords and blocks:

BSUNFLD_CALCULATE : T
BSUNFLD_TRANSFORMATION : t11 t12 t13 t21 t22 t23 t31 t32 t33

%block SPECIES_BSUNFLD_GROUPS
Species_name-1 Species_name-2 ... Species_name-N
%endblock SPECIES_BSUNFLD_GROUPS

BS_PERTURBATIVE_SOC : F
BSUNFLD_NUM_ATOMS_PRIM : nat_prim
BSUNFLD_RESTART : F
BSUNFLD_NUM_EIGENVALUES : num_eigvl

%block BSUNFLD_KPOINT_PATH
fraction_G1_kpt-1 fraction_G2_kpt-1 fraction_G3_kpt-1
fraction_G1_kpt-2 fraction_G2_kpt-2 fraction_G3_kpt-2
...

(continues on next page)
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fraction_G1_kpt-N fraction_G2_kpt-N fraction_G3_kpt-N
%endblock BSUNFLD_KPOINT_PATH

BSUNFLD_NUM_KPTS_PATH : num_kpts_path

For each in turn:

• BSUNFLD_CALCULATE setting this to True will enable the calculation of the unfolded spectral function. Default:
False

• BSUNFLD_TRANSFORMATION is a list of 9 integers representing the flattened transformation matrix from the

primitive cell to the supercell: T =

⎡⎣𝑡11 𝑡12 𝑡13
𝑡21 𝑡22 𝑡23
𝑡31 𝑡32 𝑡33

⎤⎦, where T

⎡⎣a1a2
a3

⎤⎦ =

⎡⎣A1

A2

A3

⎤⎦, with ai (Ai) being the lattice

vectors of the primitive cell (supercell). For instance, BSUNFLD_TRANSFORMATION : 4 0 0 0 4 0 0 0 1 would
correspond to an implicit 4x4x1 supercell. Default: 1 0 0 0 1 0 0 0 1, corresponding to a 1x1x1 supercell.

• The block SPECIES_BSUNFLD_GROUPS contains the atoms on which we are projecting; one needs to specify
the of the atoms species (can be different from the chemical symbol) on which the spectral function is
projected. Currently, only one group at a time is allowed. Example:

%block SPECIES_BSUNFLD_GROUPS
Mo Se1
%endblock SPECIES_BSUNFLD_GROUPS

this projects onto the MoSe2 monolayer in a MoSe2/WSe2 heterostructure, where the Se atoms be-
longing to the MoSe2 monolayer have been denoted as Se1.

• The logical keyword BS_PERTURBATIVE_SOC controls the inclusion (True) or exclusion (False) of perturbative
spin-orbit coupling in our calculation. Note that if set to True, the eigenvalues are no longer spin-degenerate
and one will have twice the number of states. Since this option essentially quadruples the size of the
Hamiltonian and overlap matrix, the calculation will be significantly slower. Default: False.

• The integer keyword BSUNFLD_NUM_ATOMS_PRIM indicates the number of atoms in the primitive cell onto
which you are unfolding. This brings us to a major requirement of the code: while the projected atoms can be
split across the list of all input atoms, the former must be grouped by primitive cells, always maintaining
the same order of the atoms in the primitive cells! Example: if atoms At1 and At2 form a primitive cell, the
input ordering “At3 At1 At2 At4 At1 At2 A3” is correct, while “At3 At1 At2 At4 At2 At3 At1” or “At3 At1
At2 At4 At2 At1 At3” are incorrect.

• The logical keyword BSUNFLD_RESTART controls whether one wishes to reuse previously calculated values for
the spectral function. The restart procedure works as follows: the code writes a restart file
(“unfolded_specfunc_red.dat”) where it stores the calculated values for the unfolded spectral function at unique
k-points of the monolayer - the values that have not been calculated yet are filled with zeros. If this file is
present and the restart keyword is set to true, the code will read in the previously calculated values and skip
them in the current computations. The final output file (“unfolded_specfunc.dat”) will only be written once all
the k-points have been dealt with.

Each line in final output file or the restart file contains 8 numbers: the eigenvalue (in eV), the real part of the
unfolded spectral function (at that k-point and eigenvalue), the imaginary part of the unfolded spectral function,
the eigenvalue count (from 1 to 2· BSUNFLD_NUM_EIGENVALUES, the x, y, and z component of the current
primitive-cell k-point (−1), and the index of the k-point (from 1 to the total number of considered k-points).

After the final output file has been obtained, one can discretize the result by convolving with a gaussian with a
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suitably-chosen width (perhaps try something around 0.05eV) in order to obtain a E(k) file that is ready to plot
with gnuplot.

• The integer keyword BSUNFLD_NUM_EIGENVALUES controls the number of eigenvalues (above and below the
Fermi level) for which the spectral function is calculated. If set to negative values,
BSUNFLD_NUM_EIGENVALUES will internally be set to the number of nondegenerate occupied eigenstates.
Thus, in total, for each k-point, the spectral function will be calculated at 2· BSUNFLD_NUM_EIGENVALUES.

• The block BSUNFLD_KPOINT_PATH indicates the fractional coordinates of the different k-points that mark
endpoints of desired paths through the primitive-cell Brillouin zone. The fractional coordinates are with
respect to the implied reciprocal lattice vectors of the primitive cell, not the simulation cell (supercell).

• BSUNFLD_NUM_KPTS_PATH represents the number of k-points calculated along each path from the
BSUNFLD_KPOINT_PATH block. This number includes the endpoints of each path. Default: 2 (the endpoints
only)

[Constantinescu2015] Constantinescu, G. C.; Hine, N. D. M. Phys. Rev. B 2015, 91, 195416

7.6 Configuration Interaction (CI)
Author

David Turban, University of Cambridge

7.6.1 Introduction
The aim of the CI functionality is to evaluate the electronic Hamiltonian with respect to a set of reference configurations
obtained from constrained DFT (cDFT) and LR-TDDFT. This makes it possible to obtain transition rates between
different electronic states using Fermi’s Golden Rule (e.g. rate of charge transfer at donor/acceptor-interface in an
organic solar cell). Also, CI can help to construct eigenstates of a system in situations where the basic ground- and
excited state methods fail due to deficiencies of the approximate exchange-correlation functional.

A classic example for such a case is the binding curve of H+
2 . The LDA functional gives an incorrect dissociation limit

with a binding energy that is significantly too small. The reason is that there is a spurious self-interaction of the single
electron with itself, such that a delocalisation of the electron over both atoms will always yield a lower energy, even
at infinite separation. Even more advanced hybrid functionals (like B3LYP) do not solve this problem since they only
include part of the exact Hartree-Fock exchange which would cancel the self-interaction. In this scenario CI offers a
way forward. By choosing the two states with the electron fully localised on either atom as references one ensures the
correct long-range limit. Finally, CI is used to evaluate the Hamiltonian in the reference basis and obtain approximate
eigenstates. This gives a very good match with LDA at short range and also retains the physical dissociation limit.

7.6.2 Theory
As a first step we assume that one intends to find the Hamiltonian matrix element ⟨Ψ𝐵 |�̂�|Ψ𝐴⟩ between two cDFT
states. In cDFT the constrained solutions are obtained as ground states of the electronic Hamiltonian augmented with
a constraining potential that pushes charge (and/or spin) around the system:

(�̂� + 𝑉𝑐)|Ψ𝑐⟩ = (�̂� + 𝑉𝑐�̂�𝑐)|Ψ𝑐⟩ = 𝐹 |Ψ𝑐⟩.

Here the potential is written as the product of its magnitude 𝑉𝑐 and a weighting operator �̂�𝑐 which specifically acts on
the donor and acceptor regions of the system with appropriate signs. In ONETEP the weighting operator is built from
local orbitals (like PAOs or NGWFs) that define the donor and acceptor regions. The eigenvalue 𝐹 is the energy 𝐸 of
the constrained solution plus a correction due to the (unphysical) constraining potential:

𝐹 = ⟨Ψ𝑐|�̂� + 𝑉𝑐�̂�𝑐|Ψ𝑐⟩ = 𝐸[𝜌𝑐] + 𝑉𝑐

∫︁
𝑑r𝑤𝑐(r)𝜌𝑐(r) = 𝐸 + 𝑉𝑐𝑁𝑐.
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The magnitude of the potential 𝑉𝑐 takes the role of a Lagrange multiplier that is chosen such that the amount of displaced
charge/spin matches the population target 𝑁𝑐. It should be noted that cDFT states are generally not eigenstates of the
electronic Hamiltonian �̂� .

Using the cDFT potentials we now obtain

⟨Ψ𝐵 |�̂�|Ψ𝐴⟩ = ⟨Ψ𝐵 |�̂� + 𝑉𝐴 − 𝑉𝐴|Ψ𝐴⟩
= 𝐹𝐴⟨Ψ𝐵 |Ψ𝐴⟩ − ⟨Ψ𝐵 |𝑉𝐴|Ψ𝐴⟩,

which reduces the problem to calculating overlaps of states and matrix elements of the cDFT potentials. At this point the
expression still contain the full many-body wave functions Ψ. To obtain a practical computational scheme we replace
them with Kohn-Sham (KS) determinants Φ and approximate

⟨Ψ𝐵 |Ψ𝐴⟩ ≈ ⟨Φ𝐵 |Φ𝐴⟩, ⟨Ψ𝐵 |𝑉 |Ψ𝐴⟩ ≈ ⟨Φ𝐵 |𝑉 |Φ𝐴⟩.

We will assume that all orbitals are chosen to be real functions, and not worry about complex conjugation in inner
products. The standard result for the overlap of two Slater determinants is given by

⟨Φ𝐵 |Φ𝐴⟩ =

∫︁
𝑑r1 . . . 𝑑r𝑁

1√
𝑁 !

⃒⃒⃒⃒
⃒⃒⃒ 𝜓

𝐵
1 (r1) · · · 𝜓𝐵

1 (r𝑁 )
...

...
𝜓𝐵
𝑁 (r1) · · · 𝜓𝐵

𝑁 (r𝑁 )

⃒⃒⃒⃒
⃒⃒⃒× 1√

𝑁 !

⃒⃒⃒⃒
⃒⃒⃒ 𝜓

𝐴
1 (r1) · · · 𝜓𝐴

1 (r𝑁 )
...

...
𝜓𝐴
𝑁 (r1) · · · 𝜓𝐴

𝑁 (r𝑁 )

⃒⃒⃒⃒
⃒⃒⃒

=

∫︁
𝑑r1 . . . 𝑑r𝑁𝜓

𝐵
1 (r1) . . . 𝜓𝐵

𝑁 (r𝑁 )

⃒⃒⃒⃒
⃒⃒⃒ 𝜓

𝐴
1 (r1) · · · 𝜓𝐴

1 (r𝑁 )
...

...
𝜓𝐴
𝑁 (r1) · · · 𝜓𝐴

𝑁 (r𝑁 )

⃒⃒⃒⃒
⃒⃒⃒

=

⃒⃒⃒⃒
⃒⃒⃒ ⟨𝜓𝐴

1 |𝜓𝐵
1 ⟩ · · · ⟨𝜓𝐴

1 |𝜓𝐵
𝑁 ⟩

...
...

⟨𝜓𝐴
𝑁 |𝜓𝐵

1 ⟩ · · · ⟨𝜓𝐴
𝑁 |𝜓𝐵

𝑁 ⟩

⃒⃒⃒⃒
⃒⃒⃒ = det (𝑆𝐴𝐵) ,

where the functions 𝜓 denote KS orbitals. The result is simply the determinant of the matrix 𝑆𝐴𝐵 of overlaps between
KS orbitals of states A and B. In a similar fashion we can evaluate matrix elements of a potential operator:

⟨Φ𝐵 |𝑉 |Φ𝐴⟩ =

∫︁
𝑑r1 . . . 𝑑r𝑁𝜓

𝐵
1 (r1) . . . 𝜓𝐵

𝑁 (r𝑁 )

[︃∑︁
𝑖

𝑉 (r𝑖)

]︃
×

⃒⃒⃒⃒
⃒⃒⃒ 𝜓

𝐴
1 (r1) · · · 𝜓𝐴

1 (r𝑁 )
...

...
𝜓𝐴
𝑁 (r1) · · · 𝜓𝐴

𝑁 (r𝑁 )

⃒⃒⃒⃒
⃒⃒⃒

=
∑︁
𝑖

⃒⃒⃒⃒
⃒⃒⃒ ⟨𝜓𝐴

1 |𝜓𝐵
1 ⟩ · · · ⟨𝜓𝐴

1 |𝑉 |𝜓𝐵
𝑖 ⟩ · · · ⟨𝜓𝐴

1 |𝜓𝐵
𝑁 ⟩

...
...

...
⟨𝜓𝐴

𝑁 |𝜓𝐵
1 ⟩ · · · ⟨𝜓𝐴

𝑁 |𝑉 |𝜓𝐵
𝑖 ⟩ · · · ⟨𝜓𝐴

𝑁 |𝜓𝐵
𝑁 ⟩

⃒⃒⃒⃒
⃒⃒⃒

=
∑︁
𝑖𝑗

⟨𝜓𝐴
𝑗 |𝑉 |𝜓𝐵

𝑖 ⟩ · 𝐶𝑗,𝑖

= det (𝑆𝐴𝐵) × tr
(︀
𝑉𝐴𝐵 · 𝑆−1

𝐴𝐵

)︀
.

In the third line the determinant is expanded along the 𝑖-th column. 𝐶𝑗,𝑖 denotes cofactors of 𝑆𝐴𝐵 which are sign-
adapted determinants of the submatrices formed by deleting the 𝑗-th row and 𝑖-th column of 𝑆𝐴𝐵 . A well-known
theorem in linear algebra states that the matrix of cofactors of an invertible matrix is equal to the transpose of the
inverse of the matrix times its determinant.

Next, we discuss how a constrained reference state can be coupled to an excited state from LR-TDDFT. In LR-TDDFT
the excited states are represented as superpositions of single-particle excitations from an occupied to an unoccupied
orbital. This information is contained in the response density matrix 𝑅𝑗𝑏. A particular non-zero entry indicates that
a transition from valence orbital 𝜓𝑗 to conduction orbital 𝜓𝑏 contributes to the excited state. In the following indices
𝑖, 𝑗, 𝑘, . . . will denote valence orbitals and indices 𝑏, 𝑐, 𝑑, . . . conduction orbitals. A natural choice for a DFT wave
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function of such an excitation that retains the response density by construction is

|Φ⟩ =
∑︁
𝑗𝑏

𝑅𝑗𝑏|Φ𝑏
𝑗⟩.

|Φ𝑏
𝑗⟩ denotes a Slater determinant constructed from the valence orbitals, except for the single valence orbital 𝑗 replaced

with conduction orbital 𝑏. For the following we assume that state B was obtained as a LR-TDDFT excitation, and A is
a (constrained) ground state as before. For the overlap we calculate

⟨Φ𝐵 |Φ𝐴⟩ =

∫︁
𝑑r1 . . . 𝑑r𝑁

∑︁
𝑗𝑏

𝑅𝑗𝑏𝜓
𝐵
1 (r1) . . . 𝜓𝐵

𝑏 (r𝑗) . . . 𝜓
𝐵
𝑁 (r𝑁 ) ×

⃒⃒⃒⃒
⃒⃒⃒ 𝜓

𝐴
1 (r1) · · · 𝜓𝐴

1 (r𝑁 )
...

...
𝜓𝐴
𝑁 (r1) · · · 𝜓𝐴

𝑁 (r𝑁 )

⃒⃒⃒⃒
⃒⃒⃒

=
∑︁
𝑗𝑏

𝑅𝑗𝑏

⃒⃒⃒⃒
⃒⃒⃒ ⟨𝜓𝐴

1 |𝜓𝐵
1 ⟩ · · · ⟨𝜓𝐴

1 |𝜓𝐵
𝑏 ⟩ · · · ⟨𝜓𝐴

1 |𝜓𝐵
𝑁 ⟩

...
...

...
⟨𝜓𝐴

𝑁 |𝜓𝐵
1 ⟩ · · · ⟨𝜓𝐴

𝑁 |𝜓𝐵
𝑏 ⟩ · · · ⟨𝜓𝐴

𝑁 |𝜓𝐵
𝑁 ⟩

⃒⃒⃒⃒
⃒⃒⃒

↑𝑗

=
∑︁
𝑖𝑗𝑏

𝑅𝑗𝑏⟨𝜓𝐴
𝑖 |𝜓𝐵

𝑏 ⟩ · 𝐶𝑖,𝑗

= det (𝑆𝐴𝐵) × tr
(︀
𝑇 𝑣𝑐
𝐴𝐵 ·𝑅⊤ · 𝑆−1

𝐴𝐵

)︀
.

The matrix 𝑇 𝑣𝑐
𝐴𝐵 represents the overlap of the valence orbitals of state A with the conduction orbitals of state B. The

derivation of the overlap with a potential operator is a bit more involved but proceeds along similar lines:

⟨Φ𝐵 |𝑉 |Φ𝐴⟩ =

∫︁
𝑑r1 . . . 𝑑r𝑁

∑︁
𝑗𝑏

𝑅𝑗𝑏𝜓
𝐵
1 (r1) . . . 𝜓𝐵

𝑏 (r𝑗) . . . 𝜓
𝐵
𝑁 (r𝑁 )

[︃∑︁
𝑖

𝑉 (r𝑖)

]︃ ⃒⃒⃒⃒⃒⃒⃒ 𝜓
𝐴
1 (r1) · · · 𝜓𝐴

1 (r𝑁 )
...

...
𝜓𝐴
𝑁 (r1) · · · 𝜓𝐴

𝑁 (r𝑁 )

⃒⃒⃒⃒
⃒⃒⃒

=
∑︁
𝑖 ̸=𝑗

∑︁
𝑏

𝑅𝑗𝑏

⃒⃒⃒⃒
⃒⃒⃒ ⟨𝜓𝐴

1 |𝜓𝐵
1 ⟩ · · · ⟨𝜓𝐴

1 |𝑉 |𝜓𝐵
𝑖 ⟩ · · · ⟨𝜓𝐴

1 |𝜓𝐵
𝑏 ⟩ · · · ⟨𝜓𝐴

1 |𝜓𝐵
𝑁 ⟩

...
...

...
...

⟨𝜓𝐴
𝑁 |𝜓𝐵

1 ⟩ · · · ⟨𝜓𝐴
𝑁 |𝑉 |𝜓𝐵

𝑖 ⟩ · · · ⟨𝜓𝐴
𝑁 |𝜓𝐵

𝑏 ⟩ · · · ⟨𝜓𝐴
𝑁 |𝜓𝐵

𝑁 ⟩

⃒⃒⃒⃒
⃒⃒⃒

+
∑︁
𝑗𝑏

𝑅𝑗𝑏

⃒⃒⃒⃒
⃒⃒⃒ ⟨𝜓𝐴

1 |𝜓𝐵
1 ⟩ · · · ⟨𝜓𝐴

1 |𝑉 |𝜓𝐵
𝑏 ⟩ · · · ⟨𝜓𝐴

1 |𝜓𝐵
𝑁 ⟩

...
...

...
⟨𝜓𝐴

𝑁 |𝜓𝐵
1 ⟩ · · · ⟨𝜓𝐴

𝑁 |𝑉 |𝜓𝐵
𝑏 ⟩ · · · ⟨𝜓𝐴

𝑁 |𝜓𝐵
𝑁 ⟩

⃒⃒⃒⃒
⃒⃒⃒

=
∑︁
𝑖𝑗𝑏

𝑅𝑗𝑏

∑︁
𝑘𝑙

⟨𝜓𝐴
𝑘 |𝑉 |𝜓𝐵

𝑖 ⟩⟨𝜓𝐴
𝑙 |𝜓𝐵

𝑏 ⟩ · 𝜖𝑘𝑙𝜖𝑖𝑗𝐶𝑘𝑙,𝑖𝑗 +
∑︁
𝑖𝑗𝑏

𝑅𝑗𝑏⟨𝜓𝐴
𝑖 |𝑉 |𝜓𝐵

𝑏 ⟩ · 𝐶𝑖,𝑗 .

In the first determinant two columns are distinct from the overlap 𝑆𝐴𝐵 , we therefore expand along both. This leads to
an expression including the second cofactors 𝐶𝑘𝑙,𝑖𝑗 . It follows from Jacobi’s theorem that

𝜖𝑘𝑙𝜖𝑖𝑗𝐶𝑘𝑙,𝑖𝑗 = det (𝑆𝐴𝐵) ×
[︁(︀
𝑆−1
𝐴𝐵

)︀
𝑖𝑘

(︀
𝑆−1
𝐴𝐵

)︀
𝑗𝑙
−
(︀
𝑆−1
𝐴𝐵

)︀
𝑖𝑙

(︀
𝑆−1
𝐴𝐵

)︀
𝑗𝑘

]︁
.

Putting everything together we finally obtain

⟨Φ𝐵 |𝑉 |Φ𝐴⟩ = det (𝑆𝐴𝐵) ×
[︀
tr
(︀
𝑉𝐴𝐵 · 𝑆−1

𝐴𝐵

)︀
tr
(︀
𝑇 𝑣𝑐
𝐴𝐵 ·𝑅⊤ · 𝑆−1

𝐴𝐵

)︀
− tr

(︀
𝑉𝐴𝐵 · 𝑆−1

𝐴𝐵 · 𝑇 𝑣𝑐
𝐴𝐵 ·𝑅⊤ · 𝑆−1

𝐴𝐵

)︀]︀
+ det (𝑆𝐴𝐵) × tr

(︀
𝑊 𝑣𝑐

𝐴𝐵 ·𝑅⊤ · 𝑆−1
𝐴𝐵

)︀
,

where 𝑊 𝑣𝑐
𝐴𝐵 refers to matrix elements of 𝑉 between valence orbitals of state A and conduction orbitals of state B.

We note that in general the Hamiltonian matrix obtained in the way shown is not symmetric due to the approximations
inherent in the DFT formalism. Hence, the Hamiltonian must be symmetrised before eigenstates can be obtained.
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7.6.3 Implementation
The CI functionality is implemented in couplings_mod. For each reference state the density kernel and NGWFs are
read from the corresponding files. Additionally, the cDFT-potentials are read from file for a cDFT reference state.
For an excited state from LR-TDDFT, conduction kernel, conduction NGWFs and the response kernel are read. A
set of orthonormal orbitals representing the valence space is obtained from the NGWF representation by solving the
eigenvalue problem ∑︁

𝛽𝛾

𝐾𝛼𝛽𝑆𝛽𝛾𝑥
𝛾 = 𝑛 · 𝑥𝛼,

and restricting to the occupied subspace. Here𝐾𝛼𝛽 is the valence density kernel and 𝑆𝛽𝛾 the overlap matrix of valence
NGWFs. Orthonormal conduction orbitals are obtained in an equivalent manner. The actual CI calculations then
proceeds in this basis as outlined in the theory section. It should be noted that the orbitals obtained in this way generally
do not correspond to the KS orbitals (they do not result from a diagonalisation of the Hamiltonian). However, both are
related through an orthogonal transformation. Hence, the determinants are identical, therefore all results are unaffected
by this choice of basis.

The transformation to a orthonormal basis comes with an inherent𝑁3 scaling of the method. The computational effort
is expected to be comparable with a properties calculation (which involves a diagonalisation of the Hamiltonian).

7.6.4 Performing a calculation
This section explains how to set up a CI calculation, and points out a couple of important things to look out for.

• First perform calculations for desired reference states. For each state the density kernel and NGWFs have to be
written to files (.dkn and .tightbox_ngwfs). For cDFT reference states the potentials and projectors are re-
quired (.cdft and .tightbox_hub_projs). For LR-TDDFT states conduction kernel and NGWFs are required
(.dkn_cond and .tightbox_ngwfs_cond), as well as the response density matrix.

• It is currently required that all reference states use the same unit cell, grid, geometry and identical atomic species
with the same number of NGWFs and the same pseudopotentials. NOTE: The current implementation is not
compatible with PAW!

• Now set up a new input file for the CI calculation. It is recommended to copy the input file of one of the cDFT
reference calculations. This ensures that the setup of the CI run is consistent with the reference calculations (in
particular with the correct projectors). If a LR-TDDFT reference state is used, also copy the conduction species
block into the file. Set TASK to COUPLINGS.

• Add the block couplings_states. This tells the CI calculation which reference states to use. Here is an
example:Each line corresponds to one reference state. The first column is short identifier for the state (currently
unused). The second column indicates whether it is a cDFT or LR-TDDFT state, the third column contains
the root name (i.e. name of original input file without extension). For a LR-TDDFT state, the fourth column
determines the index of the excitation to be used (set to 0 for cDFT states). Finally, the fifth column is the energy
in Hartree. It should be made sure that all energies are referenced to the same zero point.

• The output is written to matrix files (using dense_write). The names of these files consist of the root name
of the CI run with extensions _ci_ham and _ci_ham_sym for the CI Hamiltonian and its symmetrised version,
respectively. Eigenvalues and -states of the (symmetrised) CI Hamiltonian are written to files with extensions
_ci_eigvals and _ci_eigstates (column-wise). If output_detail : VERBOSE is chosen, the results are
also written to standard output.

7.6.5 References
• Extracting electron transfer coupling elements from constrained density functional theory, Q. Wu and T. Van

Voorhis, J. Chem. Phys. 125, 164105 (2006)

• Exciton/Charge-Transfer Electronic Couplings in Organic Semiconductors, S. Difley and T. Van Voorhis, JCTC
7, 594 (2011)
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• Determinants and matrices, A.C. Aitken, University mathematical texts vol. 20, Oliver and Boyd (1958)
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EIGHT

POPULATION ANALYSIS

8.1 ONETEP to GENNBO FILE.47 Input Parameters
Author

Louis Lee, University of Cambridge (lpl24@cam.ac.uk)

8.1.1 Standalone nbo 5 Program gennbo
The standalone version of the NBO program (GENNBO) [Glendening] accepts parameters from an input ASCII
free-format FILE.47 containing atomic coordinates and matrix information, as printed by ONETEP if the Natural
Population Analysis [Reed1985] subroutine is called during a PROPERTIES calculation, by specifying the keyword
write_nbo: T. The NBO formalism allows one transform a converged 1-particle wavefunction in an atom-centred
bases into a set of highly-local ‘Natural Bond Orbitals’, which are one and two (or three)-centred ‘lone’ and ‘bond’ pairs
recognizable as chemical bonds from a classical Lewis structure standpoint [Reed1988]. Details of the NBO formalism
are discussed elsewhere [Reed1985], [Reed1988], [MacKerell1998].

Compiling GENNBO

Compilation of the standalone GENNBO does not involve ONETEP in any way. As of writing, the latest nbo release
is version 5.9 [Glendening]. Compilation instructions are listed here for convenience, based on some trial-and-error
when the arcane g77 compiler listed in the nbo manual is unavailable.

To compile GENNBO, first, compile the activator, enable.f:

gfortran -o enable enable.f

then run the enable program. Complete the selections to generate the standalone GENNBO source gennbo.f.

By default, GENNBO limits the number of atoms and basis in the FILE.47 input to 200 and 2000 respectively. This
can be increased by replacing all instances of MAXATM = 200 and MAXBAS = 2000 to a user-specified value, up to a
limit of 999 and 9999 respectively (higher values are possible, albeit accompanied by illegible output due to format
overflow. In principle one could modify the code even further to remedy this issue.).

The following command should compile GENNBO correctly on x64 architectures, when no modification is made to
the gennbo.f source:

gfortran -fdefault-integer-8 -fno-sign-zero -m64 -o gennbo gennbo.f

ifort -i8 -m64 -f77rtl -o gennbo gennbo.f

For the 32-bit version, integer length should be set to 4 bytes instead (e.g. -i4 in ifort). If MAXATM and MAXBAS have
been increased then the memory model should also be set to allow data > 2 GB, by adding a -mcmodel=medium flag.
For ifort, an additional -shared-intel flag is most likely necessary.

Then, to run:

gennbo < FILE.47 > output.out
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8.1.2 ONETEP NPA Generation Routine
The Natural Population Analysis [Reed1985] method of computing atomic charges is implemented in ONETEP. The
routine transforms the set of non-orthogonal, optimized NGWFs into a set of orthogonal atom-centred ‘Natural Atomic
Orbitals’ (NAOs) via an ‘occupancy-weighted symmetric orthogonalization’ procedure, which serves to maximise the
resemblance of the final orthogonal orbitals to their initial non-orthogonal parents (a la Löwdin orthogonalization),
weighted according to the parent orbital occupancies. Therefore, vacant, highly-diffuse orbitals are free to distort to
achieve orthogonality with their more highly-preserved occupied counterpart. This ensures that the final NAO popula-
tion (the ‘Natural Population’) remains stable with respect to basis set size.

Once in the NAO basis, further transformations such as pair-block density matrix diagonalization produce the final set
of NBOs – these procedures are performed by nbo 5 from the FILE.47 output of ONETEP, which contains relevant
matrices in the NAO basis. The NAO routine is performed internally in ONETEP as nbo 5 requires pseudo-atomic
orbitals (such as Gaussian-type orbitals) with free-atom symmetries and orthogonality within each atom, a property
not rigorously satisfied by the optimized NGWFs.

The NPA module in ONETEP performs at its best for large systems when compiles with the ScaLapack linear algebra
package, as it takes advantage of the distributed memory storage of dense global matrices, such as the inverse square
root of the overlap matrix that needs to be computed for the ‘occupancy-weighted symmetric orthogonalization’ step.
This has the unfortunate side effect of rendering the NAO transformation a cubic-scaling method. However, this step
occurs only once during the routine, and should be comparable to the time needed to generate canonical molecular
orbitals.
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8.1.3 List of Available Parameters

Table 8.1: NAO Generation (Default)

Keyword Type Default Level Description
write_nbo L F B Enables Natural Population Analysis

(NPA) and writing of GENNBO input file
<seedname>_nao_nbo.47

nbo_init_lclowdin L T E Performs atom-local Löwdin orthogonalisa-
tion on NGWFs as the first step before con-
structing NAOs

nbo_write_lclowdin L F E Writes full matrices (all atoms) in the
atom-local Löwdin-orthogonalized
basis to FILE.47 (For refer-
ence/testing/comparison purposes). Output
will be <seedname>_lclowdin_nbo.47

nbo_write_npacomp L F B Writes NAO charges for all orbitals to stan-
dard output

nbo_write_dipole L F B Computes and writes dipole matix to FILE.
47

nbo_scale_dm L T E Scales partial density matrix output to
<seedname>_nao_nbo.47 in order to
achieve charge integrality

nbo_scale_spin L T E Scales 𝛼 and 𝛽 spins independently to inte-
gral chrage when partial matrices are printed
and nbo_scale_dm = T. Inevitably means
spin density values from GENNBO are in-
valid and one should calculate them manu-
ally from the 𝛼 and 𝛽 NPA populations.

nbo_write_species B N/A B Block of lists of species to be in-
cluded in the partial matrix output of
<seedname>_nao_nbo.47. If not present
all atoms will be included. E.g. specified
will default to AUTO. E.g.:

%block nbo_write_species

C1

H1

%endblock nbo_write_species
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Table 8.2: NAO Generation (Default) continued

nbo_species_ngwflabel B AUTO I Optional user-defined (false) lm-label for
NGWFs according to GENNBO convention.
Species not specified will default to AUTO.
E.g.:

%block nbo_species_ngwflabel

C1 "1N 151N 152N 153N"

H1 AUTO

%endblock nbo_species_ngwflabel

-N suffix denotes NMB orbital. If ’SOLVE’
orbitals are used, this block should be
present as ’AUTO’ initialisation assumes
orbitals were also initialised as ’AUTO’.

nbo_aopnao_scheme T ORIGINAL E The AO to PNAO scheme to use. Affects the
’lm-averaging’ and diagonalisation steps in
the initial AO to PNAO, NRB lm-averaging,
and rediagonaliation transformations (the
’N’ transformations in [Reed1985]). For
testing purposes only - so far none of
the other schemes apart from ORIGINAL
works. Possbile values are: ORIGINAL - de-
fault, as in [Reed1985] with lm-averaging
DIAGONALIZATION - Diagonalises entire
atom-centred sub-block w/o lm-averaging or
splitting between different angular channels.
NONE - Skips all ’N’ transformations.

nbo_pnao_analysis L F E Perform s/p/d/f analysis on the PNAOs (anal-
ogous to ngwf_analysis)
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Table 8.3: Orbital Plotting

Keyword Type Default Level Description
plot_nbo L F B Instructs ONETEP to read the relevant or-

bital transformation output from GENNBO,
determined by the flag nbo_plot_orbtype
and plots the orbitals specified in %block
nbo_list_plotnbo. write_nbo and
plot_nbo are mutually exclusive. Scalar
field plotting must be enabled (e.g.
cube_format = T).

nbo_plot_orbtype T N/A B The type of GENNBO-generated orbitals to
read and plot. Possible values and their as-
sociated GENNBO transformation files must
be present, as follows:

NAO - <seedname>_nao.33
NHO - <seedname>_nao.35
NBO - <seedname>_nao.37
NLMO - <seedname>_nao.39
NLMO is only defined for the full system
i.e. partitioned FILE.47 will give
meaningless NLMOs. Except for NLMO,
adding a ’P’ prefix e.g. ’PNAO’ to the value
of nbo_plot_orbtype causes the
non-orthogonalised PNAOs to be used in
plotting instead of NAOs. PNAOs are of the
normal type, i.e. when RPNAO = F in
GENNBO (default).

nbo_list_plotnbo B N/A B The list of nbo_plot_orbtype orbitals to
be plotted, identified by their indices as in
the GENNBO output. Specify each index on
a new line.
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Table 8.4: Output files

<seedname>_nao_nbo.47 Always written. Contains partial matrices according to %block
nbo_write_species.

<seedname>_lclowdin_nbo.47 Written if nbo_write_lclowdin = T. Always contains
all atoms in the atom-local Löwdin-orthogonalized basis.
If nbo_init_lclowdin = T and all atoms are included
<seedname>_lclowdin_nbo.47 = <seedname>_nao_nbo.
47 except for ordering of atomic centers (will be fixed in newer
releases).

<seedname>_nao_atomindex.dat Contains mapping of atomic indices of the potentially subset of the
full system in <seedname>_nao_nbo.47 to the real atomic index
of the full system (since labels have to be consecutive). Real atomic
index refers to original input order in ONETEP.

<seedname>_inittr_nao_nbo.dat Raw NGWF to NAO transformation read for plotting (i.e. when
plot_nbo = T)

<seedname>_inittr_pnao_nbo.dat Raw NGWF to PNAO transformation read for plotting (i.e. when
plot_nbo = T). PNAOs are of the ’normal’ type, i.e when RPNAO
= F in GENNBO.

<seedname>_nbo_DEBUG.dat Contains various debugging info. Only written if compiled in debug
mode.

8.1.4 Notes
Orbital labelling with pseudoatomic solver

• GENNBO labels in %block nbo_species_ngwflabel should always be explicitly given when SOLVE is used
to initialise the NGWFs. The label string is however limited to 80 characters in ONETEP, which should be fine
up to 1𝑠2𝑠𝑝3𝑠𝑝𝑑4𝑠𝑝. This will be fixed later unless it is urgently required.

• Make sure the orbitals selected for plotting are valid. The NPA routine assumes that the appropriate transforma-
tion file from GENNBO in the same directory is correct, and only complains if it encounters an EOF, but not if
the wrong transformation file is given (e.g. from a different system with a larger basis).

• Do not rename the GENNBO-generated transformation files. ONETEP expects them to have the name
<seedname>_nao.xx.

Orbital plotting

• In order to plot the various orbitals, first run the output FILE.47 through GENNBO to obtain the relevant orbital
vectors. Refer to the nbo 5 manual for details on how to print these (e.g. to print NBOs in the input FILE.47
basis, set AONBO=W in the $NBO block).

• For some reason, the PLOT keyword itself in GENNBO doesn’t work. This might have something to do with the
’ORTHO bug’.

’ORTHO bug’

The nbo 5 program up till circa April/May 2011 had a bug whereby specifying the ORTHO flag causes the program
to crash. The nbo 5 developers seem to have fixed most of this and given me the an updated version, but resid-
ual bug could remain (have they made the fix a general release yet?). This is of course fixable by running the
<seedname>_lclowdin_nbo.47 file through GENNBO instead, albeit this would mean one can’t do DM partitioning.

190 Chapter 8. Population Analysis



ONETEP Documentation, Release 7.1.8

8.1.5 Example Usage
Obtaining 2nd-order Perturbation Estimates of the 𝑛 → 𝜎* Secondary Hyperconjugation in Water
Dimer (Hydrogen Bond)

The hydrogen bond stabilization in water dimer can be attributed to the non-classical ’charge transfer’ interaction
between two water molecules due to delocalization of the electronic charge from the oxygen lone pair 𝑛 of the donor
monomer to the 𝜎* O–H antibond of the acceptor [Reed1988]. The expansion of the variational space to included
non-Lewis, formally vacant antibond NBOs leads to an energetic lowering compared to the ideal Lewis configuration
(all Lewis NBO occupancy = 2 e), which can be estimated via 2nd-order perturbation theory as the ’charge transfer’
energetic component of the dimer interaction.

From a converged SCF calculation in ONETEP using the reference coordinates below (given in Angstroms):

%block positions_abs
ang
O 10.6080354926368 12.5000150953008 12.5705695516353
H 10.4341376488693 12.5000119731552 13.5119746410112
H1 11.5729802892758 12.5000098564464 12.5000098564464
H 13.9638274701977 13.2691512541917 12.2000071259853
O1 13.4760438789916 12.5000098564464 12.5000098564464
H 13.9638258826660 11.7308667653340 12.2000083960106
%endblock positions_abs

with the pseudoatomic solver employing a minimal NGWF basis (1 NGWF on H, 4 on O) with a 10.0 a0 NGWF radius
cutoff, PBE exchange-correlation functional, norm-conserving pseudopotential with pseudized 1𝑠 core for O, and a
1200 eV psinc cutoff in a 25.0 a0 cubic simulation cell, one should run a PROPERTIES calculation with the additional
keywords as such:

write_nbo: T
%block species_ngwflabel
H "1N"
O "1N 152N 153N 151N"
H1 "1N"
O1 "1N 152N 153N 151N"
%endblock species_ngwflabel

where the species_ngwflabel block tells the NPA routine in ONETEP how to label each NGWF. The order of𝑚 for
each 𝑙 in the 𝑌 (𝑙,𝑚) isn’t straightforward, and follows the pattern of e.g. “152 153 151” i.e. 𝑚 = {−1, 0, 1} for 𝑙 = 1,
and “251 253 255 252 254” for 𝑙 = 2. I’ve yet to look at how others are arranged, though this is not very important
unless one is interested in ’NHO Directionality and Bond Bending’ analysis, as in the NBO scheme, all 𝑚 of the same
𝑙 are treated equally. The order of each 𝑌 (𝑙,𝑚) should follow that of the pseudoatomic solver, which does them in
principal quantum number (𝑛) increments (with multiple-𝜁 basis, the split-valence set of 𝑌 (𝑙,𝑚) probably comes first
i.e. 𝑌 𝜁1(𝑙,𝑚) then 𝑌 𝜁2(𝑙,𝑚) before the next 𝑛. The “N” suffix denotes valence orbital in the ground state, which in
the case of H, “1N” is the 1𝑠 orbital. Make sure the correct orbitals are marked as valence as they would appear in the
ground state (even if the pseudoatomic solver basis was initialized in an excited configuration). In this example, the
pseudoatomic solver block would have explicitly been:

%block species_atomic_set
H "SOLVE conf=1s1"
O "SOLVE conf=1sX 2s2 2p4"
%endblock species_atomic_set

ONETEP should run and produce an NPA output listing the NPA charges on each atom, and print a
<seedname>_nao_nbo.47 file. This .47 file serves as the input for GENNBO.

8.1. ONETEP to GENNBO FILE.47 Input Parameters 191



ONETEP Documentation, Release 7.1.8

If we wanted to generate NBOs and visualize them, insert the keyword AONBO=W in the $NBO block of the .47 file
before running it through GENNBO. GENNBO will output a report containing NBO information, including the 2nd-
order perturbation estimates, and a .37 file containing the NBO vectors in terms of the .37 input basis (don’t change
any of the .47, .37 etc. filenames).

First, we can see that the 2nd-order perturbation report shows one prominenet interaction, namely one between the
occupied lone pair of oxygen from one H2O unit (LP ( 2) O 5) to the O–H antibond of the other (BD*( 2) O 1- H
3) with an estimate of 15.32 kcal/mol, corresponding to the hydrogen bond in water dimer:

SECOND ORDER PERTURBATION THEORY ANALYSIS OF FOCK MATRIX IN NBO BASIS

Threshold for printing: 0.50 kcal/mol
(Intermolecular threshold: 0.05 kcal/mol)

E(2) E(j)-E(i) F(i,j)
Donor NBO (i) Acceptor NBO (j) kcal/mol a.u. a.u.

===============================================================================

within unit 1
None above threshold

from unit 1 to unit 2
2. BD ( 1) O 1- H 3 11. BD*( 1) H 4- O 5 0.08 0.67 0.007
2. BD ( 1) O 1- H 3 12. BD*( 1) O 5- H 6 0.08 0.67 0.007

from unit 2 to unit 1
3. BD ( 1) H 4- O 5 10. BD*( 1) O 1- H 3 0.10 0.83 0.008
4. BD ( 1) O 5- H 6 10. BD*( 1) O 1- H 3 0.10 0.83 0.008
7. LP ( 1) O 5 10. BD*( 1) O 1- H 3 0.18 0.49 0.008
8. LP ( 2) O 5 10. BD*( 1) O 1- H 3 15.32 0.60 0.085

within unit 2
None above threshold

Noting down the orbital numbers, we can then proceed to plot them by running another properties calculation in
ONETEP with the following block:

write_nbo : F
plot_nbo : T
cube_format : T
nbo_plot_orbtype : NBO
%block nbo_list_plotnbo
8
10
%endblock nbo_list_plotnbo

where write_nbo needs to be set to F. ONETEP will then read the <seedname>_inittr_nao_nbo.dat file printed
during the first run and the .37 file to plot the orbitals specified in the nbo_list_plotnbo block into Gaussian cube
files.

An example result is displayed in a figure available in the published paper.

192 Chapter 8. Population Analysis



ONETEP Documentation, Release 7.1.8

Notes on Selectively Passing sub-region sub-matrices into GENNBO

To circumvent the limitations on system size in GENNBO, and for convenience, we could output only matrix elements
corresponding to atoms within a selected sub-region of a large system. To do so, during an NPA analysis run (not
plotting) within a properties run in ONETEP, the following should be specified:

%block nbo_write_species
O1
H1
C1
...
%endblock nbo_write_species

ONETEP would then print only matrix elements belongning to species specified by the labels in the %block
nbo_write_species block to <seedname>_nao_nbo.47. Due to GENNBO insisting on integral charges, the density
matrix in the .47 file is re-scaled downwards to the nearest lowest integral number, to avoid the possibility of orbitals
having occupancies > 2 e, which also annoys GENNBO. To minimize the impact of this technical re-scaling to the
NBO results, a sufficiently-sized partition should be chosen in %block nbo_write_species so that 1/𝑁𝑒 << 1,
where 𝑁𝑒 is the number of electrons in the partition.

The final results fron NBO analysis that depend on the density matrix will then need to be de-scaled to arrive at the
correct value (e.g. NPA charges, NBO occupancies, 2nd-order perturbation estimates, while orbital energies don’t
require de-scaling).

Note that the region included in %block nbo_write_species should have buffer atoms, which minimally should
include the next-nearest neighbour atom bonded to the last atom in the selection – that way, the severing of a bond
would only affect NBOs centred on the buffer atom, and not anywhere else.

As a final note, there is a possibility that during an NBO search, slightly different NBO pictures are obtained when
passing only part of the matrix as compared to analyzing the full system – this can be caused by the fact that during
an NBO search, the nbo 5 program iterates through different occupancy thresholds (𝑛𝑚𝑖𝑛) for deciding upon whether
an orbital is a lone pair/NBO. If one is pedantic about this, then 𝑛𝑚𝑖𝑛 can be fixed by specifying the THRESH =𝑛𝑚𝑖𝑛

keyword manually in the $NBO block in the .47 file, where 𝑛𝑚𝑖𝑛 is defined by the user.

[Glendening] E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, F. Wein-
hold; NBO 5.9 (http://www.chem.wisc.edu/~nbo5) & the NBO 5.9 Manual, Theoretical Chemistry Institute, University
of Wisconsin, Madison, WI.

[Reed1985] A. E. Reed, R. B. Weinstock, F. Weinhold J. Chem. Phys. 1985, 83, 735-746.

[Reed1988] A. E. Reed, L. A. Curtiss, F. Weinhold Chem. Rev. 1988, 88, 899-926.

[MacKerell1998] A. D. MacKerell, Jr., B. Brooks, C. L. Brooks III, L. Nilsson, B. Roux, Y. Won, M. Karplus, in
Encyclopedia of Computational Chemistry; R. Schleyer et al. Eds.; John Wiley & Sons, Chichester, 1998; Vol. 3,
Chapter ‘Natural Bond Orbital Methods’, pp 1792-1811.

8.2 Density derived electrostatic and chemical (DDEC) electron den-
sity partitioning
Author

Louis P. Lee, University of Cambridge

Author
Daniel J. Cole, University of Cambridge

Atoms-in-molecule electron density partitioning is a useful post-processing analysis tool for computing atomic charges
(as well as higher order atomic multipoles) from the total electron density. ONETEP uses the DDEC3 method [1,3] for
this purpose, as the computed charges are both chemically meaningful and reproduce the electrostatic potential of the
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underlying QM calculation. Options are also available for computing Hirshfeld and iterated stockholder atoms (ISA)
charges [3,4].

A DDEC3 calculation to partition the electron density and output atomic charges, multipoles and volumes is performed
by specifying:

ddec_calculate : T
ddec_multipole : T
ddec_moment : 3

along with the ddec_rcomp block for your system (see below). Iterated stockholder atoms (ISA) partitioning may be
performed instead by additionally specifying:

ddec_IH_fraction : 0.00

Classical Hirshfeld partitioning may be performed instead by additionally specifying:

ddec_classical_hirshfeld : T
ddec_IH_fraction : 1.00
ddec_maxit : 1

The reference ion densities for use with DDEC3 are read in from an external library kindly provided by Thomas A.
Manz and Nidia Gabaldon Limas (please cite Refs. [1,2]), and are available for download from the ONETEP website:
http://www.onetep.org/pmwiki/uploads/Main/Utilities/ddec_atomic_densities.tar.gz
The paths to the reference densities are specified in the block ddec_rcomp. Specify one core and one total density
file for each species in your system (except for hydrogen and helium which do not require a core density file). The
example below is for methanol:

%block ddec_rcomp
H ALL “H_c2.refconf”
O ALL “O_c2.refconf”
O CORE “O_c2.coreconf”
C ALL “C_c2.refconf”
C CORE “C_c2.coreconf”

%endblock ddec_rcomp

8.2.1 References
For the development of the DDEC method:
[1] T.A. Manz and D.S. Sholl, “Improved Atoms-in-Molecule Charge Partitioning Functional for Simultaneously
Reproducing the Electrostatic Potential and Chemical States in Periodic and Non-Periodic Materials,” J. Chem.
Theory Comput. 8 (2012) 2844-2867.
[2] T. A. Manz and D. S. Sholl, “Chemically Meaningful Atomic Charges that Reproduce the Electrostatic Potential in
Periodic and Nonperiodic Materials”, J. Chem. Theory Comput. 6 (2010) 2455-2468.
And its implementation in ONETEP:
[3] L. P. Lee, N. Gabaldon Limas, D. J. Cole, M. C. Payne, C.-K. Skylaris, T. A. Manz, “Expanding the Scope of
Density Derived Electrostatic and Chemical Charge Partitioning to Thousands of Atoms”, J. Chem. Theory Comput.,
10 (2014) 5377.
[4] L. P. Lee, D. J. Cole, C.-K. Skylaris, W. L. Jorgensen, M. C. Payne, “Polarized Protein-Specific Charges from
Atoms-in-Molecule Electron Density Partitioning”, J. Chem. Theory Comput., 9 (2013), 2981.
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CHAPTER

NINE

GPU ACCELERATION

9.1 ONETEP using GPUs
Author

Jacek Dziedzic, University of Southampton

9.1.1 Introduction
Starting from v7.3, an OpenACC-based GPU port of ONETEP is available. At this moment, this is a preliminary
implementation with four key algorithms having been GPU ported.

These are:
• fast density (see Fast density calculation (for users)),

• fast local potential integrals (see Fast local potential integrals (for users)),

• Hartree-Fock exchange,

• sparse matrix products.

Note that the usual (“slow”) calculation of density and local potential integrals are not GPU-capable. You will not get
any improvement from using GPUs unless you switch to fast density and fast local potential integrals – unless you use
Hartree-Fock exchange. The improvement in sparse matrix products is modest.

9.1.2 Implementation
ONETEP uses OpenACC for offloading compute-intensive parts of the calculation to GPUs. You will need an
OpenACC-capable Fortran compiler to be able to use that. At the time this document is written (2025.04), there
are three options:

1. nvfortran (versions 24.x or 25.x are recommended),

2. Cray Fortran,

3. gfortran (suitably compiled).

Only option 1. has been tested thoroughly. Cray Fortran can be used on Archer2, but you are likely to run into problems
due to lack of testing of this configuration. Option 3. has not been tested at all, and obtaining an OpenACC-capable
gfortran compiler is in itself a daunting task. We recommend, and support, only option 1.

CUDA Fortran is not required for ONETEP, although CUDA libraries (cuFFT, cuBLAS) are. These will be provided
with your nvfortran (nvhpc) installation.
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9.1.3 Compilation and linking
A number of flags must be passed to the compiler to enable GPU support. We highly recommend using one of the
config files provided in config as a template.

Good choices are:
• conf.iridisx.nvfortran.omp.scalapack.acc,

• conf.jureca.nvfortran.omp.scalapack.acc,

• conf.RH9.nvfortran.acc.

The first two use MKL for FFTW, BLAS, LAPACK and ScaLAPACK. The last uses system-wide FFTW, and the BLAS,
LAPACK and ScaLAPACK shipped with nvhpc.

If you prefer to build your own compilation line from scratch (not recommended), here are some required flags:

• -acc to enable OpenACC in nvfortran,

• -cudalibs to link against CUDA libraries,

• -lcufft -lcublas to link against cuFFT and cuBLAS,

• -DGPU_ACC to tell ONETEP to use GPU acceleration.

The following is highly recommended:

• -DGPU_FFT_CUFFT_ACC to use GPU-accelerated FFTs via cuFFT.

The following is recommended if you have an A100 card:

• -DGPU_A100 to use an alternative approach in HFx on A100 cards.

The following is recommended if you have much more GPU power than CPU power. For instance, with 4 H100 cards
on a 64-core node you would definitely want that, but with 4 A100 cards on a 128-core node you wouldn’t. Differences
will not be substantial, so do not worry.

• -DGPU_DGEMM to use GPUs for sparse matrix products.

All the options are described in detail later in this document.

Once again, it’s much easier to start off with one of the provided config files. Take care to adjust the paths (MKLMODPATH,
LIBCUFFTPATH, LIBCUDAPATH, LIBNVSHMEMPATH – if present).

9.1.4 Running jobs
Easy-peasy! onetep_launcher now supports GPUs and will happily set everything up for you. Just make sure to
follow the documentation of your HPC system to ensure you ask for GPUs in your submission script. This is typically
realised by passing -gres=gpu:n to ask for n GPUs on each node. Some HPC systems (cough, JURECA, cough)
instead prefer you don’t this. You might also want to ensure you get exclusive access to the nodes. This may happen
automatically or not, depending on your HPC system.

Then, pass the options -G -g n to onetep_launcher, where n is the number of GPUs on a node. The option -g n
tells onetep_launcher that you would like to use n GPUs on each node. The option -G tells it to start MPS (multi-
process service) for you. This saves you a lot of hassle – a single instance of MPS needs to be started on each node,
and onetep_launcher knows how to do this. It will also ensure this worked and abort if it didn’t. If, for some
reason, you prefer not to use MPS, do not pass -G. In typical scenarios using MPS gives a modest (10-20%) boost
to GPU performance, but your mileage may vary. In particular, if you have a 1:1 mapping between MPI ranks and
GPUs, you might want not to use MPS. To start and stop MPS, onetep_launcher uses an auxiliary script called
gpu_mps_control. It’s provided in the utils directory.

Starting from v7.3.68, onetep_launcher’s resmon also supports GPUs. That is, if you pass the -r k option to
onetep_launcher to ask for monitoring resources every k seconds, in addition to running top, onetep_launcher
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will also run gpu_top (provided in the utils directory). Results will go into a directory called resmon. This lets you
easily monitor the utilisation of the GPU(s) and GPU memory use. GPU OOM scenarios are difficult to debug, and
this can help.

9.1.5 Control over GPU acceleration
The following compile-time options are recognized by the GPU port.

Op-
tion

Effect

-DGPU_ACCEnables OpenACC, and thus the GPU port. Required.
-DGPU_FFT_CUFFT_ACCUses GPUs (via cuFFT, controlled via OpenACC) for Fourier

interpolation and Fourier filtering in fast density and
fast local potential integrals. Does not affect the rest
of ONETEP. By moving adjacent operations to the GPU,
host to device copyin, and device to host copyout can be
avoided. Highly recommended.

-DGPU_FFT_CUFFT_CUDAAn alternative to -DGPU_FFT_CUFFT_ACC which uses a
CUDA (rather than an OpenACC) backend to cuFFT.
In some scenarios it can offer a modest advantage over
-DGPU_FFT_CUFFT_ACC, but it has not been tested as
thoroughly. Requires CUDA Fortran. Prefer
-DGPU_FFT_CUFFT_ACC.

-DGPU_DGEMMMoves DGEMM() operations in sparse_product() to
cuBLAS. Reduces the default value of dense_threshold
from 0.10 to 0.05.
This is a naive approach to porting sparse matrix
multiplications to GPUs. Anytime dense blocks that are
larger than 256x256 are multiplied, the multiplication is
offloaded to the GPU(s). This is only modestly faster than
CPU BLAS because of copyin and copyout. The associated
reduction in dense_threshold helps move more matmuls
to the GPU.
If your nodes have a lot of CPU power compared to GPU
power, this might not be advantageous at all. However,
if you have a lot of GPU power, this can speed sparse
algebra substantially.
For instance, with H100 cards it’s likely to help.
With A100 cards it may help if you don’t have very many
cores on a node (e.g. 64 or 48). On a desktop machine
with ~10 cores, it’s likely to help even with a less
powerful GPU. You might want to measure with and without
this setting to see if it helps with performance on your
machine. If you find good speed-ups, you may consider
reducing dense_threshold further, even to 0.0.

-DGPU_A100Forces the GPU port of Hartree-Fock exchange to use an
alternative parallelisation scheme, suitable for A100
cards. Use this if you have A100 GPUs or if you experience
deadlocks when using HFx on GPUs.
Otherwise, you probably do not need this, although it
may be beneficial to check if it improves performance.
Ignored outside of Hartree-Fock exchange.
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There is also one runtime option (specified in the input file) that controls the GPU port:

• threads_gpu – can be used to adjust the number of OpenMP threads in loops involving FFTs on the GPU(s).
This defaults to threads_max (which is the number of OpenMP threads for most of ONETEP – set with
onetep_launcher’s -t option or via OMP_NUM_THREADS). However, if this value is large (e.g. 16 or more),
it can put a lot of strain on GPU memory. If you find that you run out of GPU memory, reduce this value (e.g.
to 4, or as a last resort, to 1). This will vastly reduce the requirement on GPU memory while the reduction in
performance should not be dramatic – FFTs are expensive, and even with fewer threads it is often possible to
saturate the GPU.

9.1.6 Hartree-Fock exchange
This has been ported only partially. Work is in progress to complete that. You will notice most speed-ups for relatively
small systems (under 200 atoms). For best speed-up set:

• hfx_memory_limit -1 to turn off automatic memory management

• cache_limit_for_swops 0 to not waste memory on caching spherical wave potentials (“SWOPs”), as they
will be recalculated efficiently on the GPU(s),

• cache_limit_for_expansions n to instead use n MB of RAM per MPI rank for caching expansions (of
NGWF pairs in spherical waves), where you should choose n to be as large as possible without exceeding your
RAM allowance.

All the usual guidelines in Advanced options still apply.

9.1.7 State of the art
This is a preliminary implementation. It has been tuned for single-node performance, and will likely not scale well to
more than several nodes. Work is in progress to address that. Much of the time is still spent on CPUs. We are working
on that too.
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QM/MM (TINKTEP) AND POLARISABLE EMBEDDING

10.1 TINKTEP and polarisable embedding: linear-scaling
QM/polarisable-MM

Author
Jacek Dziedzic, University of Southampton

Date
May 2018

This manual pertains to ONETEP versions v4.5.18.8 and later, and TINKTEP versions v1.19 and later.

10.1.1 Executive summary
TINKTEP [Dziedzic2016], [Dziedzic2018] is an interface between ONETEP and TINKER (an implementation of the
AMOEBA force-field). It enables QM/MM calculations, where ONETEP is used as the QM engine, and TINKER is
used as the MM engine. The two main distinguishing features of TINKTEP are the linear scaling of the QM part (subject
to usual ONETEP linear scaling caveats), and the fact that the MM side uses a polarisable force field (AMOEBA). There
is full mutual self-consistency between the QM and MM subsystem – the QM subsystem polarises the MM subsystem
and vice versa. Van der Waals interactions between QM and MM are also taken care of. TINKTEP is work in progress,
both on the front of theory (improving the model) and implementation (adding desired features, simplifying use). It is
currently not distributed to end users and not fully supported at the level we support mainstream ONETEP features.

10.1.2 Main limitations
Some of these might be deal-breakers for you, so make sure you read this carefully.

• You must obtain and install TINKER separately, and then patch it using the provided patches.

• The filesystem on the node from which you submit parallel jobs must be visible on the compute nodes. This
can make set-up tricky on systems like ARCHER, where there is an intermediate layer of MOM nodes between
the login node and the compute nodes. Currently it’s easiest to run TINKTEP on single-node desktop machines,
where you can leverage MPI and OMP parallelism without the hassle of a batch system.

• Only open boundary conditions (OBCs) are supported so far. The QM calculation is performed in OBCs, with
the QM subsystem embedded in MM point charges, dipoles, quadrupoles and polarisable dipoles. The MM
calculation is performed in OBCs. You will not be able to simulate e.g. a QM subsystem in a periodic box of
water, for instance, but using a large sphere of MM water molecules is a decent workaround. We plan to support
PBCs in the future.

• QM/MM forces, molecular dynamics, geometry optimisation and transition state search are all not available
currently.

• Covalent bonds spanning the QM/MM interface are not supported.
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• All QM species must have identical NGWF radii. Without this simplification the numerical methods used in
SWRI (refer to “Spherical-wave resolution of identity, distributed multipole analysis (DMA) and Hartree-Fock
exchange” manual for more details) would get ugly. Typically this is a non-issue, just increase the NGWF radii
to the largest value. This might admittedly be an issue if you have a single species that requires a large NGWF
radius. This is checked against and ONETEP will not let you do SWRI unless all NGWF radii are identical.

• TINKTEP is currently incompatible with complex NGWFs and ONETEP will refuse to use both.

• The TINKTEP1 model uses a classical model for QM/MM van der Waals interactions. The TINKTEP2 model
uses a quantum-classical model for QM/MM van der Waals interactions, which requires suitable vdW parameters
for all MM species that you use. We only provide these parameters for water, K+ and Cl−, so applications of
TINKTEP2 are restricted to embedding a QM subsystem in water or KCl solutions, unless you wish to determine
suitable MM vdW parameters yourself. These are not the familiar LJ parameters 𝜎 and 𝜖 .

10.1.3 Basics
Consult [Dziedzic2016] for a detailed exposure of the theory behind the model. Consult [Dziedzic2018] for a descrip-
tion of TINKTEP2 and how it differs from TINKTEP1. This manual takes a hands-on approach, but assumes you are
familiar with the theory. This manual should be suitable for both TINKTEP1 and TINKTEP2, but the former will likely
be discontinued in the future.

TINKTEP uses Distributed Multipole Analysis (DMA) [Stone1998], [Stone2005], [Vitale2015] to build an auxiliary
representation (termed QM*) of the QM subsystem as a set of multipoles. Make sure you are famliar with DMA
and SWRI (“Spherical-wave resolution of identity, distributed multipole analysis (DMA) and Hartree-Fock exchange”)
beforehand.

10.1.4 Setting up your computational environment
1. Obtain a copy of TINKER v7.1.3. This should be available at no cost from Jay Ponder’s website. It is imperative

that you use v7.1.3 or else the patches supplied with ONETEP will not work.

2. Patch your copy of TINKER using the set of patches located in utils/tinktep/tinktep_patches. Make
sure they all applied correctly.

3. Compile and install your patched copy of TINKER.

4. Ensure that at least the following executables from the TINKER suite can be found in your PATH: analyze,
dynamic, poledit.

5. Compile ONETEP v4.5.18.8 or later.

6. Ensure all scripts supplied in utils/tinktep can be found in your PATH.

10.1.5 Setting up a QM/MM calculation
Input .xyz file

First, prepare your complete QM+MM system in the form of a TINKER .xyz file. This format differs from the four-
column (species, 𝑥, 𝑦, 𝑧) .xyz file you might be familiar with. Consult the TINKER manual for the details of the
format. In further text “.xyz format” will implicitly mean the TINKER .xyz format. If your .xyz file came from a
TINKER MD simulation, no adjustments are necessary. If you are creating the .xyz file on your own, make sure you get
the atom types and classes right, and the connectivity too – as prescribed by your MM .prm file (e.g. amoeba09.prm).
If you do not know what atom types to choose for what will be your QM atoms, do not worry particularly, just make
sure they roughly match their classical equivalents in the .prm file in terms of chemical species, hybridisation (sp2,
sp3, etc.) and connectivity. What will only matter will be their polarisabilities (for correct Thole damping of induced
QM/MM interactions) and classical vdW parameters (for QM/MM vdW energies (both the repulsive and dispersive
term in TINKTEP1, dispersive term only in TINKTEP2).

An example .xyz file for a water dimer (one water molecule in QM, one water molecule in MM) could look like this:
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6
1 O 0.583801 0.000000 0.759932 36 2 3
2 H 0.000000 0.000000 0.000000 37 1
3 H 0.000000 0.000000 1.530090 37 1
4 O -0.687305 0.000000 2.795684 36 5 6
5 H -0.448269 -0.763921 3.325671 37 4
6 H -0.448269 0.763921 3.325671 37 4

In the above 36 and 37 are atom types as defined in amoeba09.prm, and the last two colums define connectivity. Do not
worry about the absolute positioning of the molecule (if it crosses zero in any of the directions) – TINKER will work
in OBC mode and will not attempt to wrap your atoms back to the simulation cell, because there is none. ONETEP
will work with a suitably translated version of the molecule anyway.

Input .tag file

Now we need to designate each atom as part of the QM subsystem or the MM subsystem. This is done via a .tag file.
This file should contain two or three lines. The first line specifies the indices of atoms belonging to the QM subsystem.
The second line specifies the indices of atoms belonging to the MM subsystem, like this:

1 2 3
4 5 6

The above assigns the first water molecule to the QM subsystem, and the second water molecule to the MM subsystem.
In the .tag file, all atoms must be accounted for. If you want TINKTEP to ignore some atoms (say, you have .xyz
file of a large system and want to discard some of it), put their indices in the third line. Normally you would simply
omit the third line. It is not permitted for covalent bonds to span the QM/MM interface, and TINKTEP will refuse to
proceed if it detects this. For instance this:

1 2
3 4 5 6

would not be a valid .tag file.

If you want no atoms in the QM subsystem (for a purely MM calculation) or the MM subsystem (for a purely QM
calculation), put -1 in the corresponding line, rather than leaving it blank.

Do not put any comments or additional information in the .tag file, that would make it misformatted.

Rename your .tag file to use the same base name as the .xyz file (say, my_molecule.tag and my_molecule.xyz).

Input .key file

Create a .key file with the same base name as the .xyz and .tag files, and with the following contents:

digits 9
parameters amoeba09

The line with digits 9 is necessary to force TINKER to use extra precision in its outputs. The second line specifies
the MM parameter file for TINKER. Adjust it if you want to use a file different from amoeba09.prm.

Input .dat.template file

Create a .dat.template file with the same base name as the .xyz, .tag and .key files. Populate this file with the
keywords you want to be passed to ONETEP. Essentially, this file will be slightly modified by TINKTEP (specifically
by qm_xyz_to_dat) and will become the .dat that ONETEP will read. The modifications undertaken by TINKTEP
are:
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• pol_emb_pot_filename will be added1 to instruct ONETEP to perform a QM/MM calculation and inform it
about the name of the file used for communicating between ONETEP and TINKER.

• pol_emb_polscal will be set accordingly if qm_mm_polscal was set in tinktep.config.

• pol_emb_thole_a will be set accordingly if qm_mm_thole_a was set in tinktep.config.

• pol_emb_fixed_charge T will be added if the MM force field is not polarisable (e.g. GAFF), to inform
ONETEP about this fact.

• A %block positions_abs will be added, containing the species and positions of QM atoms inferred from the
.xyz and .tag files, suitably translated.

• If tinktep.config specified qm_thole_polarisability, a %block thole_polarisabilities will be
added, containing the Thole polarisabilities of QM atoms inferred from the .prm and .tag files.

• If the scenario of a purely QM calculation with classical atoms (“sparkles”) has been selected by specifying
classical_atoms in tinktep.config, a %block classical_info will be added, containing the species
and positions of MM atoms inferred from the .xyz and .tag files, suitably translated.

• If the .xyz file contained a bounding box (for PBC calculations), a suitable %block lattice_cart will be
added to match the MM box size. PBCs are not supported yet, do not rely on this functionality.

Basically, what you put in the .dat.template file should look like a normal ONETEP .dat file, except for the
positions of atoms. Do not attempt to create a .dat file on your own, leave it to TINKTEP to create it automatically
when it is run. For instance, for our water dimer example you could use this bare-bones .dat.template file:

! --- usual ONETEP keywords ---
%block species_atomic_set
H "SOLVE"
O "SOLVE"
%endblock species_atomic_set

%block species
H H 1 1 7.0
O O 8 4 7.0
%endblock species

%block species_pot
H 'H_04.recpot'
O 'O_02.recpot'
%endblock species_pot

%block lattice_cart
30.0 0.0 0.0
0.0 30.0 0.0
0.0 0.0 30.0
%endblock lattice_cart

cutoff_energy 1000 eV
charge 0
xc_functional PBE
dispersion 1

! --- cutoff Coulomb to enforce OBCs in ONETEP ---
coulomb_cutoff_type SPHERE

(continues on next page)

1 Except for purely QM calculations.
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coulomb_cutoff_radius 40.0 bohr
coulomb_cutoff_write_int F

! --- DMA setup, needed for QM/MM. Consult DMA manual for details ---
%block swri
for_dma 1 12 V 12 12 W

%endblock swri

%block species_swri-for_dma
H
O
%endblock species_swri-for_dma

dma_calculate T
dma_use_ri for_dma
dma_max_l 1
dma_max_q 12
dma_metric ELECTROSTATIC
dma_bessel_averaging T
dma_scale_charge F

! --- Polarisable embedding, needed for QM/MM. See further text. ---
pol_emb_dma_min_l 0
pol_emb_dma_max_l 1
pol_emb_mpole_exclusion_radius 1.00 bohr
pol_emb_repulsive_mm_pot_cutoff 10.0 bohr

%block mm_rep_params
H 35 2.400 ! follows TINKTEP-2 paper
O 550 1.580 ! follows TINKTEP-2 paper
%endblock mm_rep_params

TINKER’s .prm file

Copy the .prm file of your choice (typically amoeba09.prm) to the same directory where you put the .xyz, .tag,
.key and .dat.template files. Do not rename it. Ensure its basename is reflected in the parameters keyword in
the .key file.

tinktep.config file

This is the main file for controlling the QM/MM calculation. Its name is fixed, do not change it. Here’s an example
suitable for our water dimer, using the TINKTEP2 model:

jobname water_dimer

# *** Computational environment set-up ***
tinker_nthreads 8
onetep_nranks 2
onetep_nthreads 8
onetep_executable ./onetep.RH7
mpirun_executable mpirun

(continues on next page)
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# *** Nuts and bolts of the QM/MM interface ***
qm_mm_polscal 6.0
qm_polarisability
qm_thole_polarisability
renumber_offset 500

# *** Physics ***

# Undamped fixed, permanent multipoles using the full density representation,
# and Thole-damped induced dipoles using the QM* representation. MM repulsive potential.
onetep_perm_mpoles perm_fix_rep potential_coulombic_smeared energy_from_potential
onetep_induced_dipoles ind_qmstar potential_thole_damped energy_from_potential

# TINKER handles all bonded (valence) terms between MM atoms.
tinker_bond_energy 1
tinker_angle_energy 1
tinker_ureybrad_energy 1

# TINKER handles MM electrostatics.
tinker_mm_perm_energy 1
tinker_mm_pol_energy 1

# ONETEP handles QM/MM electrostatics.
tinker_qm_mm_perm_energy 0
tinker_qm_mm_pol_energy 0

# TINKER handles van der Waals for MM, and only the dispersive term for QM/MM.
tinker_mm_vdw_energy 1
tinker_qm_mm_vdw_energy 2

All tinktep.config keywords will be described later.

10.1.6 Running a QM/MM calculation
Once you have all input files in place, simply type tinktep to run the QM/MM calculation. Expect the following to
happen:

1. xyz_split will be run to split your .xyz file into a qm.xyz and a mm.xyz file, based on the contents of the
.tag file.

2. qm_xyz_to_dat will be run to build a ONETEP .dat file from the .dat.template file and the qm.xyz file,
using information from the .prm file.

3. A pair of FIFOs ($QM2MM.lock and $MM2QM.lock) will be created. These will be used for interprocess com-
munication (ONETEP to TINKTEP and TINKTEP to ONETEP).

4. ONETEP will be started in the background (via mpirun or equivalent).

5. A watchdog process will be started in the background. It will keep an eye on the mpirun process that launched
ONETEP and on ONETEP’s .err and .error_message files. It will attempt to clean up gracefully if it decides
that ONETEP crashed or was killed.

6. [scf]TINKTEP will block until it ONETEP reaches a point where total energy needs to be evaluated. Then it
will resume.
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7. TINKTEP will read the .gdma_like.txt file produced by ONETEP. This file contains the multipole represen-
tation of the QM subsystem. It will run TINKER’s poledit to process these multipoles.

8. xyz_process will be run to process the qm.xyz and mm.xyz files to a form digestible by TINKER (qm_mm.xyz
file). This is mostly about renumbering the atom types in the QM subsystem so that they do not clash with the
types in the .prm file.

9. key_processwill be run to prepare a suitable .key file for TINKER (qm_mm.key). This takes the contents of the
original .key file, and modifies it accordingly so that it is digestible by TINKER. For instance dummy bond and
angle parameters will be supplied for the QM atoms, QM sites and multipoles will be renumbered, polarisabilities
of QM atoms will be defined, the QM subsystem will be made inactive and “only formally polarisable”, etc..

10. TINKER (specifically analyze and dynamic) will be run to obtain the polarisation response of the MM sub-
system, all of MM electrostatics, QM/MM electrostatics, QM/MM van der Waals energies, MM van der Waals
and MM bonded interactions. Not all of these terms will necessarily be used in the final energy expression.

11. mpoles_process will be run to process TINKER’s multipoles and energy terms into a format understandable
by ONETEP (.mpoles_for_onetep file).

12. ONETEP will resume, after having been pinged via $MM2QM.lock.

13. If SCF convergence has been reached, TINKTEP will terminate with a short summary. If not, control will transfer
to step [scf].

All in all, the TINKTEP script drives both ONETEP and TINKER. ONETEP is executed once, in the background,
and is resumed when necessary. TINKER is started each time ONETEP performs an energy evaluation. TINKER,
which does not support MPI parallelism, is run on the local node (possibly using OMP threads). ONETEP is started
via mpirun or equivalent, and it’s the user’s responsibility to set the parallel environment in such a way, that ONETEP
gets started on the appropriate nodes (e.g. via a hostfile).

All ONETEP output goes to a qm_mm.out file with the same base name as the input. All ONETEP error messages
go to a qm_mm.err file with the same base name as the input. TINKTEP’s output goes to stdout and stderr.
TINKTEP attempts to detect a large variety of error conditions and should at least provide an informative error message
if something goes wrong. When diagnosing errors, examine stderr, ONETEP’s qm_mm.err file, ONETEP’s qm_mm.
error_message file (if any), and see if there’s a file called error_message (with no base name) – it is created when
more exotic error conditions occur.

All intermediate files are automatically moved to a subdirectory called intermediate (at each SCF iteration), they
are tagged with an SCF iteration (energy evaluation) number. It is safe to delete this directory after the calculation has
run, it’s mostly useful when diagnosing problems.

10.1.7 Output from a QM/MM calculation
Your qm_mm.out file will contain usual ONETEP output, interspersed with a lot of informative messages from DMA
and polarisable embedding. Every time the energy is evaluated, you will get a detailed breakdown of energies associated
with the QM/MM interface. Here’s what it looks like:

/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\
| Polarisable embedding potential from water_dimer_mm.mpoles_for_onetep |
| Multipole set "perm_fix_rep": 6 sites. |
| Multipole set "ind_qmstar": 6 sites. |
| All in all 12 sites, and 11 external energy terms (out of which 3 #ignored). |
| Energy term Energy Source Included? |
| - MMv bond stretch 0.000013814 Ha TINKER YES |
| - MMv angle bend 0.000229041 Ha TINKER YES |
| - MMv Urey-Bradley -0.000000274 Ha TINKER YES |
| - #QM/MM perm mpole -0.032818501 Ha TINKER NO |
| - #QM/MM polarisation -0.000794393 Ha TINKER NO |

(continues on next page)
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| - MM perm mpole 0.000000000 Ha TINKER YES |
| - MM+ polarisation 0.000000000 Ha TINKER YES |
| - #QM/MM vdW-rep 0.050008920 Ha TINKER NO |
| - QM/MM vdW-disp -0.013332666 Ha TINKER YES |
| - MM vdW-rep 0.000000000 Ha TINKER YES |
| - MM vdW-disp 0.000000000 Ha TINKER YES |
| - QM elec <-> rep MM perm_fix 0.033334141 Ha ONETEP REPULS P Fr |
| - QM elec <-> MM perm_fix_rep 0.229940160 Ha ONETEP COUL-S P Fr |
| - QM core <-> MM perm_fix_rep -0.263586238 Ha ONETEP COUL-S P FR |
| - QM* elec <-> MM ind_qmstar 0.014117659 Ha ONETEP THOLE I* |
| - QM core <-> MM ind_qmstar -0.014912052 Ha ONETEP THOLE I* |
|------------------------------------------------------------------------------|
| External | Internal | Difference |
| Permanent: -0.032818501 | -0.033646079 | 0.000827577479 (Ha) |
| Induced: -0.000794393 | -0.000794393 | -0.000000000001 (Ha) |
|------------------------------------------------------------------------------|
| Perm embed. potential min: -0.3743E+01 max: 0.6338E+01 norm: 0.1776E-01 |
\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~/

From the above example you can infer the following:

1. The file from which ONETEP reads the details of the MM embedding is water_dimer_mm.
mpoles_for_onetep.

2. There are two sets of multipoles, with 6 sites each. The first set entails permanent (perm) (as in not induced),
fixed (fix) (as in not variable in time) multipoles that generate a repulsive (rep) potential. The second set
entails induced (ind) multipoles, which interact not with ONETEP’s full electronic density, but with the QM*

description (qmstar). You probably expected 3, not 6 sites, but the .mpoles_for_onetep file also includes
QM sites in addition to MM sites. The QM sites are tagged with “#” and subsequently ignored.

3. There are 11 energy terms coming from TINKER, but 3 of these will be ignored by ONETEP in accordance
with the user’s wishes. The ignored terms are prefixed by “#” and have a “NO” in the “Included?” column. The
ignored terms in this case are:

• QM interaction with permanent MM multipoles as calculated by TINKER. This is because we instead
use the full density QM representation (as calculated by ONETEP) for this term, excluding TINKER’s
approximate idea on purpose (compare tinker_qm_mm_perm_energy 0 earlier).

• QM interaction with induced MM multipoles as calculated by TINKER. This is because we instead use the
value calculated by ONETEP for this term, even though the two should be (and are) identical, excluding
TINKER’s value on purpose (compare tinker_qm_mm_pol_energy 0 earlier).

• Repulsive part of QM/MM van der Waals interaction as calculated by TINKER. This is because we instead
use the repulsive potential model introduced in TINKTEP2, calculated by ONETEP for this term, excluding
TINKER’s classical value on purpose (compare tinker_qm_mm_vdw_energy 2 earlier).

The other terms coming from TINKER are included. These are: MM valence terms (MMv): bond, angle and
Urey-Bradley, MM-MM permanent multipole interactions (zero in this case, as there is only one molecule in
MM, and AMOEBA masked the MM permanent interactions within the water molecule), MM polarisation (“+”
serves as a reminder that this polarisation is not strictly only due to MM, because of non-additivity) (again zero
in this case, because of masking), dispersive part of QM/MM van der Waals interactions, and MM/MM vdW
terms (repulsion and dispersion) (also zero, since there is only one molecule in MM).

4. There are 5 energy terms coming from ONETEP (denoted by “ONETEP” in the “Source” column). These are

• The interaction of QM electrons with the MM repulsive potential attached to one of the multipole sets
(REPULS).
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• The interaction of QM electrons with the permanent MM multipoles, treated Coulombically with smearing
(COUL-S).

• The interaction of QM ionic cores with the permanent MM multipoles, treated Coulombically with smear-
ing (COUL-S).

• The interaction of QM* electrons (i.e. electronic multipoles) with the induced MM multipoles, treated using
Thole damping (THOLE).

• The interaction of QM ionic cores (i.e. ionic charges) with the induced MM multipoles, treated using Thole
damping (THOLE).

5. The symbols to the right of the table inform us about the assumptions ONETEP makes about some energy terms:

• Column 1: P – MM multipole set is permanent, or I – MM multipole set is induced. This affects energy
expressions – induced multipoles require work to assemble, cf. Ref. [Dziedzic2016].

• Column 2: * – calculation uses the QM* representation of the density, or (blank) – calculation uses the full
density.

• Column 3: F – MM multipole set is fixed (its value is time-independent), so its electrostatic potential can
be stored and reused, or (blank) – MM multipole set is not fixed (then its electrostatic potential has to be
recalculated every time).

• Column 4: 1 – Energy term has been calculated for the first time, and will either be reused later (e.g. for
QM cores interacting with permanent MM multipoles) or at least the MM potential will be reused (e.g. for
QM electrons interacting with permanent MM multipoles), or R – energy term has just been reused, or r –
the MM potential has been reused, but the energy has been recalculated, or (blank) – neither of the above.

• Column 5: S – dma_multipole_scaling affected this energy term, or s – pol_emb_perm_scaling
affected this energy term. These are expert directives, do not worry about them.

6. This is followed by a summary of QM/MM permanent and QM/MM induced electrostatics. “External” is TIN-
KER’s idea of these energy terms, “Internal” is ONETEP’s idea, “Difference” is the difference between the two.
Unless you do something very exotic, like ignoring polarisation, the row with “Induced” should always match
extremely well, because both ONETEP and TINKER use the same model (QM:math:^* interacting with MM
dipoles), and their calculations should match (if not, this indicates a bug or a set-up problem, and ONETEP will
abort). Unless you do something exotic, like using the QM* for permanent interactions, the row with “Perma-
nent” will not match, because TINKER uses the QM* model and thus suffers from charge penetration, while
ONETEP uses the full density for permanent interactions, arriving at the “right” result. Here, “Difference” is a
good estimate of QM/MM charge penetration error.

7. The last row gives some statistics about the permanent MM multipole potential in which QM electrons are
embedded.

10.1.8 tinktep.config directives
Here is a list of directives understood by TINKTEP that you can put in the tinktep.config file. Make sure you spell
these right, unlike ONETEP, TINKTEP silently ignores directives it does not recognise. You can use “#” to denote
comment lines. These will be ignored.

Environment set-up

jobname (string) [mandatory, basic] – specifies the base name for input (.xyz, .tag, .key, .dat.template),
files. Example: jobname qm_tryptophan_in_40_mm_waters.

onetep_executable (string) [mandatory, basic] – specifies the name of the ONETEP executable that TINKTEP
will pass to mpirun (or equivalent). This file must be user-executable.

onetep_nranks (integer) [mandatory, basic] – specifies the number of MPI ranks that TINKTEP will tell mpirun
(or equivalent) to start ONETEP on.
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onetep_nthreads (integer) [mandatory, basic] – specifies the number of OMP threads that TINKTEP will tell
ONETEP to use (by setting OMP_NUM_THREADS. You can always override this with specific ONETEP thread keywords
in the .dat.template file.

onetep_args (string) [optional, expert] – specifies additional arguments that you might want to pass to ONETEP.
These will go between the ONETEP executable and the ONETEP input file. This only makes sense if your
onetep_executable actually points to a wrapper script that will know what to do with these arguments.

tinker_nthreads (integer) [optional, intermediate] – specifies the number of OMP threads that TINKTEP will
tell TINKER to use (by adding a keyword to qm_mm.key. If left unspecified, this will be left at TINKER’s discretion.
Caveat: TINKER sometimes carelessly outputs to stdout from OMP regions, which can cause a mess. If TINKTEP
complains that it cannot parse TINKER’s output, try setting this to 1 to disable OMP in TINKER.

mpirun_executable (string) [mandatory, basic] – specifies the name of the mpirun executable that TINKTEP
will use to launch ONETEP. Set this to mpirun, unless your environment uses something fancier like aprun, or you
want to specify a full path to select a specific mpirun executable.

mpirun_args (string) [optional, intermediate] – specifies additional arguments that you might want to pass to
mpirun. These will go between the mpirun executable and -np <onetep_nranks>. Can be useful for passing a
hostfile name.

watchdog_unfazed_by_stderr (no args) [optional, intermediate] – tells TINKTEP’s watchdog not to keep an
eye on ONETEP’s .err file. Normally any output to this file is an indication that something went wrong, and the
watchdog then initiates cleanup. In some environments you can get innocuous messages written to a job’s .err file,
e.g. warnings from MPI or the transport layer. Use this directive to immunize the watchdog against these.

QM/MM set-up: basic

onetep_perm_mpoles (set_name) (potential_mode) (energy_mode) [mandatory, basic] – specifies the
treatment of permanent MM multipoles inside ONETEP. All three arguments are strings and are mandatory. These
are extremely important and have to be discussed in detail.

• set_name – a short, descriptive name that will identify the permanent MM multipole set in ONETEP. Crucially,
this name will also be parsed by ONETEP to infer the properties of this set. Thus, certain tokens (substrings)
carry very specific meaning in the context of the name. These are:

– perm – the set is permanent (as in “not induced”). This affects energy expressions – induced multipoles
require work to assemble, permanent sets do not, cf. Ref. [Dziedzic2016].

– ind – the set is induced (as in “not permanent”). This affects energy expressions – induced multipoles
require work to assemble, permanent sets do not, cf. Ref. [Dziedzic2016].

– fix – the set is fixed (as in “not changing in time”). This does not mean “not moving through space”
(currently all MM multipoles are presumed not to be moving through space). Calculations on fixed sets
will be optimised to re-use electrostatic potentials or entire energy terms.

– qmstar – the set uses the QM* representation and not the full QM density when interacting with the QM
subsystem. If absent, the full QM density is used by default.

– rep – the set generates an MM repulsive potential (for the TINKTEP2 model). If absent, no MM repulsive
potential will be generated by the set. Note: If rep is present for more than one set, only the last set set
will generate the MM repulsive potential.

• potential_mode – describes how ONETEP generates the electrostatic potential coming from this multipole
set. Four options are possible:

– potential_zero – the set does not generate any potential (and so is essentially ignored).

– potential_coulombic_smeared – the set generates a Coulombic potential, with a small degree of
smearing only very close to the location of each point multipole – this is done to avoid singularities
(cf. pol_emb_mpole_exclusion_radius, polemb_smearing_a).
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– potential_coulombic_masked – the set generates a Coulombic potential, which is, however,
masked (zeroed) very close to the location of each point multipole – this is done to avoid singu-
larities (cf. pol_emb_mpole_exclusion_radius). This is not recommended, except for tests, use
potential_coulombic_smeared instead.

– potential_thole_damped – the set generates a Thole-damped potential, mimicking AMOEBA polarisa-
tion interactions. Thole damping is a classical scheme and is designed to be applied to interactions between
two point multipoles. Thus it is best suited to the QM* representation (cf. qmstar above), and not to inter-
actions between MM point multipoles and the full, distributed QM density, although this is, in principle,
possible. The magnitude of the damping depends on the polarisabilities of the two interacting sites. For
MM sites the polarisabilities are determined by the force field (.prm file). For QM* sites the polarisabilities
either have to be specified in the .dat.template file (%block thole_polarisabilities), or can be
inferred automatically from the .prm file. The latter option is preferred, it can be activated via the direc-
tive qm_thole_polarisability in tinktep.config. This instructs TINKTEP (and qm_xyz_to_dat
in particular) to add a suitable %block thole_polarisabilities automatically. When an attempt is
made to use Thole damping with a multipole set that does not specify qmstar, a Thole-damped potential
coming from the set will need to be integrated with the full QM density, and there is no corresponding
polarisability that can be used in the Thole damping expression. In this unlikely scenario, the value of
pol_emb_pairwise_polarisability, with a unit of bohr, is used for the Thole variable 𝐴 (which is
otherwise equal to √

𝛼1𝛼2). The default value of this parameter corresponds to the average polarisability
of all atom types in AMOEBA09.

• energy_mode – describes how ONETEP calculates the electrostatic energy of this multipole set interacting with
the QM subsystem. Two options are possible:

– energy_zero – the set does not contribute to energy (and so is essentially ignored).

– energy_from_potential – the set’s contribution to energy will be made consistent with the setting for
the potential (see above).

Not all combinations of potential_mode and energy_mode make sense. For instance trying to combine
potential_coulombic_smeared with energy_zero will lead to an inconsistency between the Hamiltonian
and the energy expression, breaking LNV and NGWF convergence. Using energy_from_potential is gener-
ally the safest option, as it guarantees consistency.

onetep_induced_dipoles (set_name) (potential_mode) (energy_mode) [mandatory, basic] – specifies
the treatment of induced MM dipoles inside ONETEP. The meaning of the arguments is the same as for
onetep_perm_mpoles above.

Some typical settings for the above two keywords:

# Usual TINKTEP2 set-up: Permanent multipoles interact Coulombically with full QM␣
→˓density,
# induced dipoles interact with QM* via Thole damping,
# repulsive MM potential in effect (attached to perm. multipoles)
onetep_perm_mpoles perm_fix_rep potential_coulombic_smeared energy_from_potential
onetep_induced_dipoles ind_qmstar potential_thole_damped energy_from_potential

# Usual TINKTEP1 set-up: Permanent multipoles interact Coulombically with full QM␣
→˓density,
# induced dipoles interact with QM* via Thole damping,
# no repulsive MM potential in effect.
onetep_perm_mpoles perm_fix potential_coulombic_smeared energy_from_potential
onetep_induced_dipoles ind_qmstar potential_thole_damped energy_from_potential

# TINKTEP2 set-up for a non-polarisable force-field (eg. GAFF).
onetep_perm_mpoles perm_fix_rep potential_coulombic_smeared energy_from_potential

(continues on next page)
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onetep_induced_dipoles ind_qmstar potential_zero energy_from_potential

# TINKTEP2 set-up, where both permanent and induced interactions use QM* and Thole␣
→˓damping
onetep_perm_mpoles perm_fix_rep_qmstar potential_thole_damped energy_from_
→˓potential
onetep_induced_dipoles ind_qmstar potential_thole_damped energy_from_
→˓potential

qm_thole_polarisability (no args) [optional, basic] – asks TINKTEP to automatically infer the Thole polar-
isabilities of QM sites from the .prm file and to automatically add a suitable %block thole_polarisabilities to
the .dat file. Strongly recommended.

qm_polarisability (no args) [optional, basic] – forces TINKER to treat QM sites as “formally polarisable”,
that is, to take their polarisabilities into account in Thole damping expressions, but not to put induced dipoles on them.
Treat this directive as mandatory, the alternative scheme is no longer supported.

QM/MM set-up: treatment of energy terms

The following directives control how different energy terms generated by TINKER are taken into account in the
QM/MM calculation.

tinker_bond_energy (0 or 1) [optional, intermediate] – when enabled (1), the valence MM term due to bond
stretches is included in the QM/MM energy expression. When omitted, defaults to 0. In typical scenarios you’d want
this enabled. Disabling might be necessary if there are no bonds between MM atoms (e.g. for a noble gas).

tinker_angle_energy (0 or 1) [optional, intermediate] – when enabled (1), the valence MM term due to angle
bends is included in the QM/MM energy expression. When omitted, defaults to 0. In typical scenarios you’d want this
enabled. Disabling might be necessary if there are no angles between MM atoms (e.g. for a noble or diatomic gas).

tinker_ureybrad_energy (0 or 1) [optional, intermediate] – when enabled (1), the valence MM term due to
Urey-Bradley interactions is included in the QM/MM energy expression. When omitted, defaults to 0. In typical
scenarios you’d want this enabled. Disabling might be necessary if there are no Urey-Bradley interactions between
MM atoms.

tinker_mm_perm_energy (0 or 1) [optional, intermediate] – when enabled (1), the electrostatic term due to
permanent MM-MM interactions is included in the QM/MM energy expression. When omitted, defaults to 0. In
typical scenarios you’d want this enabled.

tinker_mm_pol_energy (0 or 1) [optional, intermediate] – when enabled (1), the electrostatic term due to MM-
MM polarisation interactions is included in the QM/MM energy expression. Even though polarisation interactions are
not additive, TINKER formally splits them a posteriori into QM-MM polarisation and MM-MM polarisation, which
add up to total MM polarisation. When omitted, defaults to 0. In typical scenarios you’d want this enabled.

tinker_qm_mm_perm_energy (0 or 1) [optional, intermediate] – when enabled (1), the electrostatic term due
to interactions between permanent MM multipoles and QM is included in the QM/MM energy expression. When
omitted, defaults to 0. In typical scenarios you’d want this disabled, because TINKER’s idea of this interaction
suffers from charge-penetration error. This term would then be taken into account on ONETEP’s side, via an
energy_from_potential setting for permanent multipoles (cf. onetep_perm_mpoles).

tinker_qm_mm_pol_energy (0 or 1) [optional, intermediate] – when enabled (1), the electrostatic term due to
QM-MM polarisation interactions is included in the QM/MM energy expression. Even though polarisation interactions
are not additive, TINKER formally splits them a posteriori into QM-MM polarisation and MM-MM polarisation, which
add up to total MM polarisation. When omitted, defaults to 0. In typical scenarios you’d want this disabled. This term
would then be taken into account on ONETEP’s side, via an energy_from_potential setting for induced dipoles
(cf. onetep_induced_dipoles). The two expressions should yield the same result, provided qmstar is used for
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onetep_induced_dipoles. Having ONETEP calculate this term permits checking the two results (TINKER’s and
ONETEP’s) for consistency.

tinker_mm_vdw_energy (0 or 1) [optional, intermediate] – when enabled (1), the van der Waals term due to
MM-MM non-bonded interactions is included in the QM/MM energy expression. When omitted, defaults to 0. In
typical scenarios you’d want this enabled.

tinker_mm_vdw_energy (0 or 1 or 2 or 3) [mandatory, intermediate] – controls if and how the van der
Waals term due to QM-MM non-bonded interactions is included in the QM/MM energy expression. The following
values are possible:

• 0 – omit QM-MM vdW interactions entirely.

• 1 – include QM-MM vdW interactions, both the repulsive and dispersive term, via classical Halgren potential.
Recommended for TINKTEP1 model.

• 2 – include QM-MM vdW interactions, but only the dispersive term, via classical Halgren potential. Recom-
mended for TINKTEP2 model, where repulsive QM-MM vdW interactions would be handled via a repulsive
MM potential.

• 3 – include QM-MM vdW interactions, but only the repulsive term, via classical Halgren potential. Only included
for completeness.

QM/MM set-up: details of the interface

The following directives control how the QM/MM interface behaves.

qm_mm_polscal (real) [optional, intermediate] – controls scaling of QM/MM polarisation interactions (intro-
duced in TINKTEP2). Defaults to no scaling if omitted. The apparent polarisability of QM sites is scaled (multiplied)
by the value of this parameter, thereby increasing damping if it is greater than 1.0, and attenuating damping (increasing
the strength of polarisation interactions) if it is between 0.0 and 1.0. Recommended value: 6.0 for TINKTEP2, omit
for TINKTEP1.

renumber_offset (integer) [mandatory, intermediate] – specifies the value by which atom types for QM atoms
are offset from their original force field counterparts. This is used to avoid clashes between “fake” QM types presented
to TINKER and original atom types. Use a large, three-digit value, like 500, unless you have good reason for doing
otherwise.

coord_xlat (x) (y) (z) [optional, intermediate] – specifies the vector (in bohr) by which all QM atoms are
translated in the .dat file. All arguments are real numbers and are mandatory. Values will be interpreted as bohr, do
not specify any units. This directive becomes useful when the contents of the qm.xyz file are positioned unsuitably for
ONETEP in OBC mode, e.g. leading to NGWFs not fitting in the simulation cell. In general, TINKER always works
with original (untranslated) coordinates, and ONETEP always sees coordinates translated by this vector. All .xyz files
work with the original coordinates, the .dat file works with the translated coordinates. If omitted, this value will be
determined automatically: a bounding box will be calculated for the QM subsystem, and the translation vector will be
such that the centre of the bounding box will coincide with the centre of the simulation cell. This is handy, but can lead
to eggbox errors when comparing energies between different molecules (as they might be translated differently). It is
advised to set this translation vector manually, and identically for all molecules whose energies will be compared.

QM/MM set-up: expert options

classical_atoms (no args) [optional, expert] – when present, TINKTEP will add a %block classical_info
containing the species and positions of MM atoms inferred from the .xyz and .tag files, suitably translated, to the
.dat file. Charges for the classical atoms will be extracted from specially crafted comments in the .dat.template
file. This is useful when generating reference classical embedding (“sparkles”) calculations. You should normally omit
this directive. The format for specifying charges of classical atoms is as follows:

!$ classical_species_charge H 0.417
!$ classical_species_charge O -0.834
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These lines are formally comments and will be ignored by ONETEP, but qm_xyz_to_dat will know how to interpret
them.

mm_fixed_charge (no args) [optional, expert] – when present, instructs TINKTEP that the MM force field is not
polarisable. Leave this directive out by default. Non-polarisable force-fields need a few particular tweaks (TINKER’s
multipole keyword is replaced by charge in the qm_mm.key file, the polarizable keyword needs to be omitted
from same, pol_emb_fixed_charge T will be automatically added to the .dat file to instruct ONETEP not to look
for %block thole_polarisabilities in the .dat file, and TINKER’s output will be parsed differently). These
tweaks are activated by this directive.

pure_mm (no args) [optional, expert] – when present, instructs TINKTEP that the calculation is a purely MM
calculation, and ONETEP does not need to be invoked.

pure_qm (no args) [optional, expert] – when present, instructs TINKTEP that the calculation is a purely QM
calculation: TINKTEP does not need to be invoked, and pol_emb_pot_filename T must not be added to the .dat
file so that ONETEP runs without polarisable embedding. This is necessary due to a bug in TINKER, which causes it
to hang if all atoms are inactive.

qm_mm_thole_a (real) [optional, expert] – when present, the specified value overrides the value of Thole’s 𝑎
parameter read from the .prm file. This value will be used only for QM/MM interactions, as TINKER will use the
force-field value for MM/MM interactions.

qm_dummy_atoms (no args) [optional, expert] – experimental functionality for adding dummy DMA sites on MM
atoms, do not use.

Command-line options to the tinktep script

tinktep is normally run without arguments. The following command-line options are supported:

-1 – Only the first two stages described in Section [running] are performed, then TINKTEP exits. In essence, all input
files are parsed and intermediate inputs are prepared, but neither ONETEP nor TINKER are actually run.

-2 – All stages described in Section [running], except the first two, are performed. In essence, the calculation is run,
assuming all intermediate inputs have been prepared in advance. Splitting the two parts of the calculation (preparation
and actual execution) enables manual or scripted tweaking of intermediate inputs by the user.

–dry-run – equivalent to -1, only deprecated.

10.1.9 ONETEP keywords pertaining to polarisable embedding
A number of ONETEP keywords can be used to control the polarisable embedding functionality, which underlies
QM/MM calculations.

Keywords mandatory for polarisable embedding

pol_emb_pot_filename (string) – specifies the name of the file used for exchanging information between
ONETEP and TINKTEP. This file will be read by ONETEP and constructed by TINKTEP at every energy evalua-
tion. This keyword is also used to turn on polarisable embedding (when it is present), and to turn it off (when it is
absent). Default: absent.

pol_emb_dma_max_l (integer) – specifies the maximum angular momentum in the SW basis used in polarisable-
embedding-DMA. In most scenarios this will be equal to 𝑙max that you specified in the SWRI block. Read the description
of 𝑙max in the DMA documentation to understand the meaning of this parameter. You can use a lower value than the
one specified in the SWRI block if you want to use only a subset of the SW basis set (e.g. for benchmarking). This
keyword does not affect properties-DMA (for which dma_max_l should be used). This directly affects the quality of
the QM* representation – specifying 0 leads to a charge-only representation, specifying 1 leads to a charge-and-dipole
representation, specifying 2 leads to a charge-dipole-and-quadrupole representation.
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Common optional keywords

pol_emb_polscal (real) – specifies the scaling factor applied to QM polarisabilities (cf. qm_mm_polscal
tinktep.config directive). This keyword will be added automatically by TINKTEP, do not add it on your own.
Default: 1.0.

pol_emb_repulsive_mm_pot_cutoff (physical) – specifies the cutoff (in length units) for the MM repulsive
potential (cf. rep token in tinktep.config directives onetep_perm_mpoles and onetep_induced_dipoles).
The value of the MM repulsive potential from an MM site will be assumed to be zero beyond this cutoff. This is used
to minimise computational effort. The default is 10.0 bohr.

pol_emb_mpole_exclusion_radius (physical) – specifies the distance (in length units) around any mul-
tipole below which its Coulombic potential is masked or smeared (cf. potential_coulombic_masked
and potential_coulombic_smeared arguments to tinktep.config directives onetep_perm_mpoles and
onetep_induced_dipoles. This has no effect on Thole-damped multipole sets. The default is 0.25 bohr.

pol_emb_fixed_charge (logical) – if T, the MM force field will be assumed to be non-polarisable. If F (which
is the default), the MM force field will be assumed to be polarisable. When the force field is polarisable and the
QM* representation is used (pol_emb_qmstar T), %block thole_polarisabilities becomes mandatory. This
keyword will be added automatically by TINKTEP, do not add it on your own.

pol_emb_qmstar (logical) – if T, the QM* representation will be employed for some or all QM-MM interac-
tions. This is automatically set to T once polarisable embedding is activated. Only use F in the rare scenario, where
the QM* representation will not be necessary (e.g. for non-polarisable force fields) and you want to elide %block
thole_polarisabilities.

Uncommon and expert optional keywords

pol_emb_thole_a (real) – can be used to override the value of Thole’s 𝑎 parameter read from the .prm file. This
value will be used only for QM/MM interactions, as TINKER will use the force-field value for MM/MM interactions.
This keyword will be added automatically by TINKTEP if qm_mm_thole_a is specified in tinktep.config, do not
add it on your own. Default: 0.39.

pol_emb_smearing_a (physical) – can be used to control the aggresiveness of Coulombic smearing
(cf. potential_coulombic_smeared argument to tinktep.config directives onetep_perm_mpoles and
onetep_induced_dipoles. This has no effect on Thole-damped multipole sets. The default is 0.2 bohr.

pol_emb_pairwise_polarisability (physical) – see discussion of potential_coulombic_smeared argu-
ment to tinktep.config directives onetep_perm_mpoles and onetep_induced_dipoles. Default: 1.92618 bohr
(yields the average AMOEBA09 polarisability). You should not have to use this keyword.

pol_emb_repulsive_mm_pot_write (logical) – if set to T, the repulsive MM potential will be written to a .
cube/.dx/.grd file at every energy evaluation. Used for debugging purposes. Default: F.

pol_emb_dbl_grid (logical) – if set to T the polarisable embedding contribution to the NGWF gradient will be
computed on the double grid. By default it is computed on the coarse grid, like in HFx. Technically, to prevent aliasing,
the double grid version should be used, but it is unbearably inefficient and has not been optimised much, as I plan this
to remain an experimental facility at most. To ensure consistency, pol_emb_dbl_grid T should only be used together
with swx_dbl_grid T, which ensures NGWF-SWOP overlaps are calculated on the double grid too. This functionality
has not been thoroughly tested. I strongly recommend leaving this at default (F).

pol_emb_perm_scaling (real) – all QM permanent multipoles will be scaled by this factor (default: 1.0, so no
scaling). This can be used to test the effects of overpolarising/underpolarising QM/MM interactions.
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Experimental vacuum-DMA functionality

This is an experimental, unpublished and hardly-tested functionality that allows having two different QM* descriptions –
one for the vacuum density (i.e. in the absence of polarisable embedding), and one for the difference between the density
with embedding present and without it (“polarisation density”). In principle this permits expanding the vacuum state
density e.g. up to quadrupoles, and the difference e.g. only in dipoles, to mimic AMOEBA (by excluding “polarisable
quadrupoles” and “fluctuating charges” in QM). Preliminary tests (2017) showed that this hardly matters, but it might
be worth studying in more detail.

pol_emb_vacuum_qmstar (logical) – when set to T, it enables the vacuum-DMA functionality. Default: F, un-
less (all three simultaneously) pol_emb_write_vacuum_restart F, pol_emb_vacuum_dma_max_l is present and
pol_emb_qmstar T.

pol_emb_dma_min_l (integer) – specifies the minimum angular momentum in the SW basis used in polarisable-
embedding-DMA for the polarisation density. In most scenarios this will be equal to 0. This keyword does not affect
properties-DMA (for which the corresponding value is always 0). This directly affects the quality of the QM* repre-
sentation for the polarisation density. Setting pol_emb_dma_min_l 1 and pol_emb_dma_max_l 1 in particular will
cause the polarisation density to be expanded only in terms of dipoles. Default: 0.

pol_emb_vacuum_dma_min_l (integer) – specifies the minimum angular momentum in the SW basis used in
polarisable-embedding-DMA for the in-vacuum density. In most scenarios this will be equal to 0. This keyword does
not affect properties-DMA (for which the corresponding value is always 0). This directly affects the quality of the QM*

representation for the in-vacuum density. Default: 0.

pol_emb_vacuum_dma_max_l (integer) – specifies the maximum angular momentum in the SW basis used in
polarisable-embedding-DMA for the in-vacuum density. In most scenarios this will be equal to 1 (up to dipoles) or
2 (up to quadrupoles). This keyword does not affect properties-DMA (for which dma_max_l should be used). This
directly affects the quality of the QM* representation for the in-vacuum density. Default: -1 (indicating “unset”).

pol_emb_write_vacuum_restart (logical) – if set to T, restart files (.pol_emb_vac_tightbox_ngwfs and
.pol_emb_kdenskern) will be written every time the NGWF gradient is calculated. These restart files can be later
used in the polarisation calculation. Default: F

Block keywords used in polarisable embedding

The following blocks are used to control polarisable embedding in ONETEP:

• %block thole_polarisabilities
<QMatom1> <polarisability1>
<QMatom2> <polarisability2>
... ...
<QMatom<n>> <polarisability<n>>
%endblock thole_polarisabilities

This block specifies Thole polarisabilities for all QM atoms, in units of bohr3. Normally (i.e. if
qm_thole_polarisability is specified in tinktep.config), this block will be automatically added by TIN-
KTEP, which infers the QM polarisabilities from the .prm and .tag files. If you prefer to specify polarisabilities
manually, add this block and omit qm_thole_polarisability from tinktep.config. For example for water
TINKTEP would generate:

%block thole_polarisabilities
O 5.648355971436 ! Water O
H 3.347173908999 ! Water H
H 3.347173908999 ! Water H
%endblock thole_polarisabilities
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• %block mm_rep_params
<MMspecies1> <A!1> <zeta1>
<MMspecies2> <A!2> <zeta2>
... ...
<MMspecies<n>> <A!<n>> <zeta<n>>
%endblock mm_rep_params

This block specifies the MM repulsive potential parameters for all MM species in the system. The parameter
𝐴 is the magnitude (in hartree), the parameter zeta=𝜁 is the inverse-width (in bohr−1). For example for water,
parameterised as in Ref. [Dziedzic2018]:

%block mm_rep_params
H 35 2.400
O 550 1.580
%endblock mm_rep_params

10.1.10 Questions?
Questions should be directed to Jacek Dziedzic, J.Dziedzic[-at-]soton.ac.uk.

[Stone1998] A.J. Stone, GDMA: distributed multipoles from Gaussian98 wavefunctions (technical report), University
of Cambridge (1998).

[Stone2005] A.J. Stone, Journal of Chemical Theory and Computation 6 1128-1132 (2005).

[Dziedzic2016] J. Dziedzic, Y. Mao, Y. Shao, J. Ponder, T. Head-Gordon, M. Head-Gordon and C.-K. Skylaris, J.
Chem. Phys. 145 12 124106 (2016).

[Dziedzic2018] J. Dziedzic, T. Head-Gordon, M. Head-Gordon and C.-K. Skylaris, (in preparation) (2018).

[Vitale2015] V. Vitale, J. Dziedzic, S.M.-M. Dubois, H. Fangohr and C.-K. Skylaris, Journal of Chemical Theory and
Computation 11 7 3321-3332 (2015).
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11.1.1 Introduction
Energy decomposition analysis (EDA) decomposes the interaction energy (∆𝐸) of an arbitrary number of non-bonded
fragments into its chemical components [Phipps2015]. In the case of the ONETEP EDA [Phipps2016], based on the
ALMO [Kaliullin2007] and LMO [Su2009] EDA approaches, these components are combined into a frozen density
component (∆𝐸FRZ) term, polarisation (∆𝐸POL), and charge transfer (∆𝐸CT) (as per the original ALMO EDA), as,

∆𝐸 =∆𝐸FRZ + ∆𝐸POL + ∆𝐸CT .

The frozen density component, representing the interaction of the frozen densities of the fragments and subsequent
antisymmetrization, is further decomposed into its electrostatics (∆𝐸ES), exchange (∆𝐸EX), correlation (∆𝐸CORR),
and Pauli repulsion (∆𝐸REP) terms as,

∆𝐸FRZ =∆𝐸ES + ∆𝐸EX + ∆𝐸CORR + ∆𝐸REP .

In the ONETEP implementation, the correlation term is further partitioned into its frozen (∆𝐸FRZ−CORR) and Pauli
repulsion (∆𝐸REP−CORR) terms as,

∆𝐸CORR = ∆𝐸FRZ−CORR + ∆𝐸REP−CORR .

These terms may be recombined to obtain the full correlation energy term.

The total interaction energy is expressed in its decomposed form as,

∆𝐸 =∆𝐸ES + ∆𝐸EX + ∆𝐸CORR

+ ∆𝐸REP + ∆𝐸POL + ∆𝐸CT .

11.1.2 Performing EDA calculations in ONETEP
There are two approaches to performing energy decomposition analysis (EDA) calculations in ONETEP:

1. All-In-One (1S) This approach involves creating a single input file with all the necessary information to complete
an EDA calculation (TASK EDA).

• Designed for smaller systems.
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2. Three-Stage Fragment-to-Supermolecule (3S) This approach involves three stages. Firstly NGWF tightboxes
and density kernels for the fragments are optimised and written to disk. Next the fragment states are superposed
to the supermolecule to prepare the supermolecule data (TASK EDA_PREP). Finally the EDA calculation is ran
using this supermolecule-prepared data (TASK EDA).

• Designed for larger protein-ligand type EDA calculations.

Both approaches are equivalent and produce identical results. The choice of whether to use the 1S or 3S approach
is usually determined by system size and parallelisation requirements (please see section [sect:ParallelisationReq]).
Further details of calculations using these two approaches and a list of the EDA-specific keywords and descriptions are
provided below:

All-in-One

The all-in-one (1S) approach is the default EDA calculation configuration, and is ran by simply setting the TASK keyword
to EDA. In addition to the standard input keywords and blocks, the EDA_IATM block is necessary to perform ONETEP
EDA calculations. This block defines the fragment atoms (referenced to the atom definitions in POSITIONS_ABS),
and the fragment charges. Atoms of the supermolecule are arranged in the POSITIONS_ABS block by concatenation
of the fragment atoms, using their nuclear coordinates found in the supermolecule. For example, if a supermolecule
system comprising the fragments 𝐻2𝑂 (atoms 1 to 3), 𝑂𝐻− (atoms 4 to 5), and 𝑁𝑎+ (atom 6) is defined in the
POSITIONS_ABS block,

%block POSITIONS_ABS
O 17.16973430 19.79077059 17.26422010
H 16.00000000 19.22196603 16.00000000
H 18.57568311 18.64371289 17.26799954
O 21.16270452 17.46075058 18.04467287
H 22.06598884 16.00000000 17.45886087
Na 20.73940810 20.59012052 20.33500884

%endblock POSITIONS_ABS

then the fragment data necessary for the EDA calculation is input as,

%block EDA_IATM
!N_at Charge
3 +0
2 -1
1 +1

%endblock EDA_IATM

Three-Stage

The 3S EDA has been developed to work easily with EDA directory structures, with fragment calculations being per-
formed in separate folders. These data directories are specified in the input file using the EDA_FRAG and EDA_SUPER
blocks as will be discussed below. In our EDA calculation example of a supermolecule comprising three fragments
provided below, the following directory structure is used:

./STAGE1/FRAG01/

./STAGE1/FRAG02/

./STAGE1/FRAG03/

⎫⎬⎭Fragment calculations

./STAGE2} Supermolecule preparation calculation

./STAGE3} Supermolecule EDA calculation

It is noted that the user is not limited to three fragments , and that the folder names given above are for example purposes
only and any folder and input file names may be used.
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In all three stages, it is necessary to ensure that the system parameters are kept at constant values. For example, it is
unwise to modify the NGWF radii or box sizes between the calculation stages. It is also important to ensure atomic
orderings in the input file are consistent, i.e. that the orderings of atoms within each of the fragments do not change
between the different calculation stages.

Stage 1

The first stage simply involves the user writing converged fragment data to disk. For each fragment comprising the
supermolecule, a separate input file is constructed with the following parameters set:

write_denskern T
write_tightbox_ngwfs T
TASK SINGLEPOINT

Running these calculations will result in fragment ‘.dkn’ and ‘.tightbox_ngwfs’ files being written to disk. In our
example, the three fragment calculation are ran in the directories STAGE1/FRAG01/, STAGE1/FRAG02/, and STAGE1/
FRAG03/ using the input filenames ‘frag01.dat’, ‘frag02.dat’, and ‘frag03.dat’ for the respective fragments 1, 2, and
3.

Stage 2

The input file for the second stage is prepared by including the parameters EDA_READ_FRAGS T and TASK EDA_PREP.
Running ONETEP with this input file will result in the converged fragment data being loaded in and combined to
produce the supermolecule complex data (‘.eda’, ‘.dkn’ and ‘.tightbox_ngwfs’ files) necessary for stage three. These
fragment files’ names are set via the EDA_FRAG block, e.g. for a three fragment system:

%block EDA_FRAG
frag1prefix
frag2prefix
frag3prefix

%endblock EDA_FRAG

where frag1prefix, frag2prefix and frag3prefix are the filename prefixes that will result in loading of the ‘.dkn’
and ‘.tightbox_ngwfs’ files for the three fragments that were converged in stage one. In our example, we assume the
second stage calculation is performed in the directory STAGE2/ with the input filename ‘stage2.dat’. In this case the
block would appear in the input file as,

%block EDA_FRAG
../STAGE1/FRAG01/frag01
../STAGE1/FRAG02/frag02
../STAGE1/FRAG03/frag03

%endblock EDA_FRAG

Stage 3

The third stage is performed by including the parameters EDA_READ_SUPER T and TASK EDA in the input file. As
described earlier for the 1S approach, it is necessary for the user to define the fragment atoms and charges using
the EDA_IATM block. On running ONETEP with this input file, the ‘.dkn’, ‘.tightbox_ngwfs’ and ‘.eda’ files for the
supermolecule prepared from stage two will be loaded. These files’ names are set via the EDA_SUPER block, e.g.

%block EDA_SUPER
supermoleculeprefix

%endblock EDA_SUPER
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where supermoleculeprefix is the filename prefix that will result in loading of the ‘supermoleculeprefix.dkn’, ‘su-
permoleculeprefix.tightbox_ngwfs’, and ‘supermoleculeprefix.eda’ files. In our example, where the third stage calcu-
lation is performed in the directory STAGE3/ with the input filename ‘stage3.dat’, the block would appear as,

%block EDA_SUPER
../STAGE2/stage2

%endblock EDA_SUPER

11.1.3 Continuation
Continuation of supermolecule-stage EDA calculations (stage three of the 3S EDA) is controlled using the
EDA_CONTINUATION keyword. Continuation files are written to disk within the current working directory when the
value of the EDA_WRITE logical keyword is set to true, and continuation files are read by setting the EDA_CONTINUATION
logical keyword to true.

It is recommended that the storage of continuation data should be kept separate to the TASK EDA_PREP task calculation
data of stage two. This is achieved by performing the stage three calculation in a separate directory to the stage two
calculation. This is because the EDA data produced from the TASK EDA_PREP calculation produces a reference to the
frozen state which the NGWFs and density kernel will be reset to in a large proportion of EDA calculation cases.

11.1.4 EDA schematic
An example EDA calculation and directory structure is provided in Fig. 11.1.

11.1.5 Additional functionality
Further details of the EDA functionalities is given below:

Fragment-wise polarisations

Please note that the following functionality is developmental and is subject to change.
It is possible to obtain polarisation energies for each of the fragments by ‘freezing’ the electronic density during the
SCF-MI optimisation. The number of additional polarisation calculations required to perform this is equal to the
number of fragments in the system. This functionality is activated using the EDA_FRAG_ISOL_POL logical keyword.
Also computed is a ‘higher order’ polarisation contribution that quantifies the difference between the individual
fragment polarisation total and the full polarisation energy, i.e.

∆𝐸POL,HO =

𝑁frag∑︁
𝐴∈X

∆𝐸POL(A) − ∆𝐸POL

where ∆𝐸POL,HO is the higher order polarisation contribution, 𝑁frag is the number of fragments, ∆𝐸POL(A) is the
polarisation energy for fragment 𝐴 that constitutes the supermolecule X, and ∆𝐸POL is the polarisation energy on
polarising all fragments simultaneously.

Fragment pair-wise delocalisations

Please note that the following functionality is developmental and is subject to change.
This functionality is activated using the EDA_FRAG_ISOL_CT logical keyword.
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Fig. 11.1: An example 3S EDA calculation (data IO flows are represented by arrows).
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It is possible to calculate fragment pair delocalisation energies by combining fragments within the SCF-MI optimisa-
tion. For example, if we consider a system of interacting (𝐻2𝑂)3, the delocalisation between any two water molecules
is calculated by subtracting the SCF-MI energy of a combined (𝐻2𝑂)2 ‘fragment’ interacting with 𝐻2𝑂 from the
SCF-MI energy of the system with the (𝐻2𝑂)2 ‘fragment’ partitioned into its two 𝐻2𝑂 constitutents.

Density visualisation

Obtaining electron density (ED) files for visualisation of the EDA frozen, polarisation and fully electronically relaxed
states can be done using the WRITE_DENSITY_PLOT logical keyword. The output densities are identified by the ‘_ed_’
filename string.

Filename String Summary
xxx_eda_frzidem_ed_density.cube The ED of the frozen state.
xxx_eda_pol_iii_ed_density.cube The ED of fragment iii electronically polarised in the field of all other frag-

ments.
xxx_eda_pol_ed_density.cube The ED of the fully electronically polarised state.
xxx_eda_relaxed_ed_density.cube The ED of the fully electronically relaxed state.

Table: The EDA electron density (ED) filename extension descriptions (filename root is denoted by xxx).

Visualisation of the density changes during the EDA polarisation and charge transfer processes via electron density dif-
ference (EDD) calculations are obtained using the EDA_DELTADENS logical keyword. The output densities are identified
by the ‘_edd_’ filename string.

Filename String Summary
xxx_pol_iii_edd_density.cube The electronic polarisation EDD of fragment iii in the field of all other fragments.
xxx_eda_pol_higher_order_edd_density.cubeThe higher order electronic polarisation EDD (of the individual fragment-

polarised states to the fully polarised state).
xxx_eda_pol_edd_density.cube The fully electronically polarised EDD state.
xxx_eda_ct_edd_density.cube The charge transfer EDD.

Table: The EDA electron density difference filename extension descriptions (filename root is denoted by xxx).

Both ED and EDD functionalities are compatible with fragment-specific (see previous section) EDA calculations. Note:
electron density differences are currently not computable when the EDA_CONTINUATION keyword is set to true. In this
case, the edd_cube utility may be used along with the ED cube files produced using the WRITE_DENSITY_PLOT logical
keyword to calculate EDD files independently of ONETEP (see ‘Additional utilities’ section).

11.1.6 Parallelisation
Parallelisation requirements

The 1S calculation has a parallelisation strategy with restricted maximum possible number of MPI processes,
𝑁proc,max,

𝑁proc,max = min [𝑁at(A), 𝑁at(B)]

where𝐴 and𝐵 are fragments comprising a supermolecule𝐴𝐵. For example in the case of a water dimer𝑁proc,max =
3.

The 3S EDA allows the user to take full advantage of the parallelisation strategy during the supermolecule stage three,
i.e.

𝑁proc,max = min [𝑁at(A), 𝑁at(B)]|S=1,2

𝑁proc,max = 𝑁at(AB)|S=3
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where S is the stage number. For example in the case of a water dimer 𝑁proc,max = 6 during the supermolecule stage
three (S=3).

ScaLAPACK

The current EDA implementation requires explicit calculation and manipulation of the fragment MO eigenvectors. The
ONETEP EDA implementation is compatible with the LAPACK [Anderson1999] and ScaLAPACK [Blackford1997]
packages, and has been interfaced to the DSYGVX and PDSYGVX eigensolvers. Compilation with the ScaLAPACK
solver is enabled at compilation time using the -DSCALAPACK flag. Use of this package provides significant speed-ups
by parallelised computation of the eigenvectors required.

The threshold tolerance to which the eigenvectors are orthogonalised is specified by the eigensolver_abstol key-
word. It has been observed that the eigensolver may require tighter than the default thresholds. This parameter can be
modified in the input, e.g. eigensolver_abstol = 1.0E-12.

11.1.7 Additional utilities
utils/edd_cube.F90

This utility calculates the electron density difference between two ‘.cube’ volumetric data files Usage: ./edd_cube
cubein1 cubein2 cubeout, where n(cubeout) = n(cubein1) - n(cubein2)

[Phipps2015] Maximillian J. S. Phipps, Thomas Fox, Christofer S. Tautermann, and Chris-Kriton Skylaris. Energy
decomposition analysis approaches and their evaluation on prototypical protein-drug interaction patterns. Chem. Soc.
Rev., 44:3177–3211, 2015.

[Phipps2016] Maximillian J. S. Phipps, Thomas Fox, Christofer S. Tautermann, and Chris-Kriton Skylaris. Energy
decomposition analysis based on absolutely localised molecular orbitals for large-scale density functional theory cal-
culations in drug design. (Submitted), 2016.

[Khaliullin2007] R. Z. Khaliullin, E. A. Cobar, R. C. Lochan, A. T. Bell, and M. Head-Gordon. J. Phys. Chem. A,
111:8753–8765, 2007.

[Su2009] Peifeng Su and Hui Li. Energy decomposition analysis of covalent bonds and intermolecular interactions. J.
Chem. Phys., 131(1):014102, 2009.

[Anderson1999] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.
Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition, 1999.

[Blackford1997] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1997.
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ONETEP now has the electron localisation descriptors:
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• Electron Localisation Function (ELF) [Becke1990]

• Localised Orbital Locator (LOL) [Becke2000]

These descriptors provide a visualisation tool for indicating the location of electron pairs, including bonding and lone
pairs, and distinguishing between 𝜎 and 𝜋 bonds. It is a dimensionless quantity in the range of 0 and 1. The plots can
be output in .𝑐𝑢𝑏𝑒 or .𝑑𝑥 format for visualisation as isosurfaces or volume slices.

The ELF was first introduced by Edgecombe and Becke in 1990 for Hartree-Fock Theory, and later updated for Density
Functional Theory by Savin et al.. [Becke1990], [Becke2000], [Savin1992] It is based on the Hartree Fock probability
of finding two particles of the same spin 𝜎 at two different positions of a multielectron system. From this, Edgecombe
and Becke obtained the conditional probability of an electron existing in the proximity of a reference electron, which
relates to electron localisation. The smaller the probability, the increased likelihood that the reference electron is
localised, provided both the electrons are of the same spin. This probability vanishes to zero when the two electrons
have the same position, in agreement with the Pauli principle.

This probability is not upper-bounded and so for more convenient graphical interpretation, it is inverted. Localisation
is represented at unity. Details are below.

The LOL is similar to the ELF, but with a simpler representation, and produces cleaner plots in some cases.
[Schmider2004]

The ELF provides quantum Valence Shell Electron Pair Repulsion (VSEPR) representation of coordination compounds,
and the identification of covalent bonding across crystalline solids and surfaces. This provides a useful tool for the main
applications of ONETEP; biomolecular simulations, catalysis, and the design of nanostructured materials.

11.2.1 Electron Localisation Function
The starting point to the ELF formula is the exact kinetic energy density for spin 𝜎,

𝜏𝑒𝑥𝑎𝑐𝑡𝜎 (r) =
∑︁
𝛼

𝜏(r;𝛼), (11.1)

where 𝜏(r;𝛼) = (∇𝜓𝛼(r)) ·
(︂
∇
∑︀

𝛽 𝐾
𝛼𝛽𝜓𝛽(r)

)︂
defined in ONETEP [Womack2016] in terms of NGWFs where 𝛽 are all which overlap with 𝜓𝛼. Note that the standard
1
2 coefficient in ONETEP is omitted for the purposes of the ELF, to follow the definition by Becke. The term 𝜏𝑒𝑥𝑎𝑐𝑡𝜎

is extended into a formula to describe electron localisation, a non-negative probability density. This will be called the
Pauli kinetic energy, 𝐷𝜎 . For the individual spin, the Pauli kinetic energy takes the form:

𝐷𝜎 = 𝜏𝑒𝑥𝑎𝑐𝑡𝜎 − 1

4

(∇𝑛𝜎)
2

𝑛𝜎
.

where 𝑛𝜎(r) is the charge density for each spin 𝜎, and∇𝑛𝜎(r) is its gradient. 𝐷𝜎 is compared with the uniform electron
gas as a reference, by taking the ratio:

𝜒𝜎 =
𝐷𝜎

𝐷0
𝜎

.

where

𝐷0
𝜎 =

3

5

(︀
6𝜋2
)︀ 2

3 𝑛
5
3
𝜎 .

The charge density is the local value of 𝑛𝜎 (r) here and the coefficient is the Fermi constant.

Hence, the measure of electron localisation has now become dimensionless. 𝜒𝜎 is then reformulated to avoid the
open bounds of the above formula, limiting the ELF to a more desirable finite range of values of 0 to 1 for visual
representation:

𝐸𝐿𝐹 =
1

1 + 𝜒2
𝜎
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11.2.2 Localised Orbital Locator
The LOL is similar to the ELF. Again, the starting point is the exact kinetic energy for spin 𝜎, as in Equation (11.1),
with the 1

2 coefficient omitted.

The uniform electron gas reference,𝐷0
𝜎 , is used again here, also known as the local spin density approximation (LSDA):

𝜏𝐿𝑆𝐷𝐴
𝜎 =

3

5

(︀
6𝜋2
)︀ 2

3 𝑛
5
3
𝜎 .

The ratio follows a similar structure to the ELF, except for it is inverted, which again, makes the quantity dimensionless:

𝑡𝜎 =
𝜏𝐿𝑆𝐷𝐴
𝜎

𝜏𝑒𝑥𝑎𝑐𝑡𝜎

.

The quantity is reformulated to change the infinite range into a 0 to 1 range like before:

𝑣𝜎 =
𝑡𝜎

1 + 𝑡𝜎

11.2.3 How to use
Keywords

The keywords related to the implementation of the electron localisation descriptors are as follows:

Keyword: Options (default):
eld_calculate T/F (F)
eld_function ELF/LOL (ELF)
ke_density_calculate T/F (F)
do_properties T/F (F)
cube_format T/F (T)
dx_format T/F (F)

• Setting 𝑒𝑙𝑑_𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 to true turns on the calculation. The calculation will not proceed if this keyword is missing
or if it set to false.

• The keyword 𝑒𝑙𝑑_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 determines which of the ELF or LOL ONETEP is to calculate, by specifying either
string. The default here is the ELF, provided the keyword 𝑒𝑙𝑑_𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 has been specified.

• As part of this implementation, the kinetic energy density can now also be output, using the logical keyword
𝑘𝑒_𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒. This does not automatically output with 𝑒𝑙𝑑_𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒.

• Electron localisation descriptors and kinetic energy density are available in the formats of .𝑐𝑢𝑏𝑒 or .𝑑𝑥 files.

• For spin polarised systems, there will be an ELF output for each spin individually, showing the electron locali-
sation for one of the spins.

In order to use any of the above keywords, ONETEP’s properties calculation must be enabled, using 𝑑𝑜_𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠
or setting the task to 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠, if reading in density results of an energy minimisation calculation. To produce the
density plot during the original energy calculation, the input should include:

task singlepoint
write_density_plot T

Example input file

Below is an example input for using the ELF, for the water molecule:
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task singlepoint
cutoff_energy 900.0 eV
maxit_ngwf_cg 100
output_detail verbose
do_properties T
cube_format T
dx_format F
grd_format F
eld_calculate T
eld_function ELF

%block lattice_cart
40.000000000000 0.000000000000 0.000000000000
0.000000000000 40.000000000000 0.000000000000
0.000000000000 0.000000000000 40.000000000000
%endblock lattice_cart

%block positions_abs
O 20.000000000 20.000000000 20.000000000
H 18.565580829 18.889354011 20.000000000
H 21.434419171 18.889354011 20.000000000
%endblock positions_abs

%block species
O O 8 4 8.0
H H 1 1 8.0
%endblock species

%block species_pot
O <path to oxygen.recpot>
H <path to hydrogen.recpot>
%endblock species_pot

[Becke1990] A. D. Becke and K. E. Edgecombe. A simple measure of electron localization in atomic and molecular
systems. J. Chem. Phys., 92(9):5397-5403, 1990.

[Becke2000] A. D. Becke and H. L. Schmider. Chemical content of the kinetic energy density. Journal of Molecular
Structure (Theochem), 527:51–61, 2000.

[Savin1992] A. Savin, O. Jepsen, J. Flad, O. K. Andersen, H. Preuss, and H. G. von Schnering. Electron localization
in solid-state structures of the elements: the diamond structure. Angewandte Chemie International Edition in English,
31(2):187–188, 1992.

[Schmider2000] H. Schmider and A. Becke. Chemical content of the kinetic energy density. Journal of Molecular
Structure (Theochem), 527(1):51 – 61, 2000.

[Womack2016] J. C. Womack, N. Mardirossian, M. Head-Gordon, and C.-K. Skylaris. Self-consistent implementation
of meta-gga functionals for the ONETEP linear-scaling electronic structure package. The Journal of Chemical Physics,
145(20):204114, 2016.
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12.1.1 Introduction to geometry relaxation
Geometry relaxation is a process that moves the positions of atomic nuclei to their equilibrium values in a system.
This system can be a chemical structure of higher organisation, e.g., a molecule, a cluster of molecules, or a crystal
lattice. It is often called geometry optimisation as it is an optimisation process, where the objective function is the
total energy of the system. More elaborately, it is a process that searches for a solution to a minimisation problem,
i.e., minimise the total energy that is a function of the atomic coordinates. In place of atomic coordinates, we usually
consider the positions of the nuclei of atoms in the system. This is performed in an iterative fashion and a candidate
solution is provided at every iteration that is called a “step”. At every step, the optimisation algorithm dislocates the
positions of the nuclei then it optimizes the electronic structure, and finally it calculates the total energy of the chemical
structure. Consequently, a geometry optimisation is a series of single point energy calculations that completes when
certain convergence criteria are met. In ONETEP, geometry relaxation (optimisation) is invoked by setting the TASK
variable in the input file as,

task : GeometryOptimization

Potential Energy Surface

The potential energies, E, of all possible configurations (R𝐴,R𝐵 , . . . ,R𝑁 ) of the atoms in the system lie on a surface.
This is called the potential energy surface (PES), and it is characterised by the equation below,

𝐸 = 𝐸(R𝐴,R𝐵 , . . . ,R𝑁 ) (12.1)
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The PES is the search domain of the optimisation algorithm, even though most geometry relaxation methods search in
a region close to the initial guess structure provided by the user. Each point on the PES is associated with a value of
the potential energy and a specific configuration of atoms. The initial guess geometry can be set in various ways, e.g.,
from experiment or based on a crystal lattice. This structure is now a point on the PES and has an associated energy
We need to navigate the PES so that we find points of lower energy, hence more stable configurations compared to the
initial one.

Local Optimisation

At the first step, updated atomic positions are calculated using an optimisation method (these are discussed in section
4). The first and second derivatives of the energy, E, with respect to atomic (nuclear) positions, R, are often calculated
to estimate the next point. We remind the reader that the first derivative is related to the forces on each atom as a result
of its interaction with other atoms in the system. This is a 3𝑁 matrix, where 𝑁 is the number of atoms in the system
it has the form [Scherlis2006],

F𝐴 = − 𝑑𝐸

𝑑R𝐴
(12.2)

where the nuclear coordinates of an atom A that belongs to the system in Cartesian space are: R𝐴 = (𝑥𝐴, 𝑦𝐴, 𝑧𝐴).
If the net forces on the atoms are zero, then we have an extremum. Then we need to calculate the second derivative
to investigate if this is a minimum (stable structure) or a maximum (transition state). The Hessian matrix possesses
information about the second derivatives, hence it is frequently called the force constant matrix. This is a 3𝑁 × 3𝑁
matrix, and it can be written in the following form for any atoms A, B in the system,

H𝐴𝐵 =
𝜕2𝐸

𝜕R𝐴𝜕R𝐵

(12.3)

This calculation is important to examine if this point is a minimum. To do this, vibrational frequencies are calculated
from the Hessian [Schlegel2011]. A minimum is characterised by a net zero force and positive vibrational frequencies.
In simple terms, the minimum is located where the first derivative is zero and the second derivative (that is relevant to
the local curvature) is positive. Consequently, one needs to calculate the energy and its first and second derivatives to
investigate if a point on the PES is a minimum.

By default, the positions of all nuclei are modified during optimisation. Nevertheless, we can exclude a subset of the
nuclei of the system from the optimisation. This way we can keep the positions of certain nuclei constant, if needed,
even when positions of other nuclei are changed.

12.1.2 Convergence Criteria
There are a few criteria that can be examined to assess whether the geometry relaxation has converged to a local mini-
mum structure. These include criteria concerning the energy and the net forces on atoms in the system. Additionally,
the geometry relaxation can be stopped if a certain number of steps has been made regardless of the energy and forces
in the final structure. This is not really a convergence criterion but it is important to be able to stop the process for a
number of reasons which are discussed later in this section.

Force tolerance

Atomic positions need to be relaxed as the net force on each atom should be zero. Practically, it is difficult, if at all
possible, to have a net zero force on every atom. Consequently, this process minimizes the magnitude of the net force
on each atom so that it approaches zero as much as possible, and within a certain tolerance. The default force tolerance
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is 0.002 𝐸𝐻 𝑎−1
0 . This criterion can be modified by the user through setting the following parameter in the input file,

geom_force_tol : [VALUE] [UNITS]

e.g.,

geom_force_tol : 0.051422 eV/ang

or

geom_force_tol : 0.001 Ha/bohr

or

geom_force_tol : 0.001

if units are not specified, they are thought to be 𝐸𝐻𝑎
−1
0 .

Maximum number of steps

Another criterion that can be assessed to stop the relaxation process is the maximum number of steps to be made.
The user can have both criteria, so if any of those is satisfied after a certain step, then the process is terminated.
The maximum number of steps does not guarantee a minimum energy structure, but it is a good check to stop the
optimisation if it does not descend the PES in a satisfactory way or if the time of the calculation is limited. In any
case, it will provide us with a candidate structure after a certain number of steps given an initial guess and a specific
optimisation algorithm. This criterion can be controlled by the user through setting the following parameter in the input
file,

geom_max_iter : [VALUE]

e.g.,

geom_max_iter : 100

if this is not specified by the user in the input file, then its default value is 50. This means that 50 geometry relaxation
steps will be performed at most. Fewer steps will be performed if other criteria, such as force, energy tolerance, are
satisfied before that.

Convergence window

The convergence window is the number of steps where all the criteria set for the geometry relaxation must be satisfied
to declare convergence. The default value is 2 steps. This is recommended to achieve a balance between accuracy and
efficiency. This criterion can be controlled by the user through setting the following parameter in the input file,

geom_convergence_win : [VALUE]

e.g.,

geom_convergence_win : 3

Energy tolerance

Another convergence criterion that can be specified by the user is the energy tolerance. This tells the geometry relax-
ation to stop if the difference between the maximum and minimum energies per atom over geom_convergence_win
steps is less than this value. The default value is 10−6𝐸𝐻 . This criterion can be controlled by the user through setting
the following parameter in the input file,

geom_energy_tol : [VALUE] [UNITS]

e.g.,

geom_energy_tol : 1e − 7 Ha

or

geom_energy_tol : 2.72e − 6 eV
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Displacement tolerance

Another way to check if the geometry relaxation has converged is to assess the maximum displacement of the positions
of the nuclei. In practice, we calculate the set of distances of nuclei between two consecutive steps. If the largest
value in this set is equal to or less than the tolerance, then the maximum distance that an atom has been displaced is
considered small enough to tell the optimisation to stop. In other words, atoms have not moved considerably between
two consecutive steps, hence the relaxation has converged. The default value is 0.005 𝑎0. If units are not defined, then
these are thought to be 𝑎0. Units “ang” correspond to Å. This criterion can be controlled by the user through setting
the following parameter in the input file,

geom_disp_tol : [VALUE] [UNITS]

e.g.,

geom_disp_tol : 0.002 bohr

or

geom_disp_tol : 0.001 ang

12.1.3 Options
Output detail

The output detail of the geometry relaxation process can be controlled by the user. The default behaviour is to follow
the output_detail variable that controls the overall output detail of the ONETEP calculation. The available settings
for this variable are BRIEF, NORMAL, VERBOSE, PROLIX, and MAXIMUM. The level of the output detail
relevant to geometry relaxation can be controlled by setting the following parameter in the input file,

geom_output_detail : [VALUE]

e.g.,

geom_output_detail : VERBOSE

Continuation

The user can select whether to continue from a previous geometry relaxation or start from scratch. The default value
of this logical variable is FALSE that means geometry relaxations start from scratch. This option can be controlled by
the user through setting the following parameter in the input file,

geom_continuation : [VALUE]

e.g.,

geom_continuation : FALSE

Steps between backups

The user can control the number of geometry optimisation steps between backups of all data for continuation. In other
words, this tells the program to write a backup for continuation every geom_backup_iter steps. The default value of
this variable is 1, so ONETEP writes a backup after every step of the geometry relaxation. This value can be increased
to save time on writing continuation data. This option can be controlled by the user through setting the following
parameter in the input file,

geom_backup_iter : [VALUE]

e.g.,

geom_backup_iter : 2
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Density Kernel and NGWFs

Steps between reset of density kernel and NGWFs

The user can control the stride with which the density kernel and the Nonorthogonal Generalized Wannier Func-
tions (NGWFs) are being reset. In other words, this tells the program to reset the kernel and NGWFs every
geom_reset_dk_ngwfs_iter steps. The default value of this variable is 6, so ONETEP resets these quantities ev-
ery 6 geometry relaxation steps. Resetting the density kernel and NGWFs every once in a while can prevent problems
in converging the energy of the NGWFs during optimisation. This option can be controlled by the user through setting
the following parameter in the input file,

geom_reset_dk_ngwfs_iter : [VALUE]

e.g.,

geom_reset_dk_ngwfs_iter : 10

Reuse density kernel and NGWFs

The user can control whether to re-use an existing density kernel and set of NGWFs. The default value of this logical
variable is TRUE except from the case of a Density-Functional based Tight-Binding (DFTB) calculation, where it is
FALSE by default. This option can be controlled by the user through setting the following parameter in the input file,

geom_reuse_dk_ngwfs : [VALUE]

e.g.,

geom_reuse_dk_ngwfs : FALSE

12.1.4 Geometry Relaxation methods
There is a variety of optimisation algorithms implemented in ONETEP. The user can select which algorithm to use by
setting the following parameter in the input file,

geom_method : [VALUE]

e.g.,

geom_method : TPSD

These methods are being discussed in this section.

BFGS

The Broyden-Fletcher-Goldfard-Shanno (BFGS) algorithm is a very popular quasi-Newton optimisation method that is
implemented in various computational chemistry codes, including ONETEP. In ONETEP, the BFGS algorithm follows
the implementation by Pfrommer et al. [Pfrommer1997]. This method uses an initial Hessian matrix that is updated in
an iterative fashion. The domain of this Hessian includes both internal and cell degrees of freedom, hence both nuclear
coordinates, R, and lattice vectors, h, are relaxed. The following notation is used for the lattice vectors,

h = [𝑈𝑉𝑊 ] (12.4)

in more detail, if the unit vectors along the x, y, and z directions in Cartesian space are î, ĵ, and k̂, respectively, then

h = 𝑈 î + 𝑉 ĵ +𝑊 k̂ (12.5)

The BFGS algorithm uses information from both forces and the Hessian matrix to investigate a minimum. The latter
is computationally expensive as it is 𝑂(𝑁2) [Aarons]. The Hessian should be an operator that transforms between the
changes in nuclear positions and forces,

H𝑛+1∆R𝑛 = ∆F𝑛 (12.6)
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where ∆Rn and ∆Fn are the changes in positions and forces between steps 𝑛− 1 and 𝑛, respectively.

Then, the algorithm updates its guess solution based on,

H−1
𝑛+1 = (I−A)H−1

𝑛 (I−A) + A (12.7)

where,

A = 𝜌𝑛∆F𝑛(∆R𝑛)𝑇 (12.8)

𝜌𝑛 =
1

(∆F𝑛)𝑇 ∆R𝑛
(12.9)

Therefore, the BFGS algorithm updates the inverse Hessian matrix at every step, as it is more computationally efficient
than updating the Hessian and then inverting it at every step. At last, the BFGS algorithm can be selected by setting
the geom_method variable to BFGS in the ONETEP input file.

Initial Inverse Hessian Matrix

In ONETEP, the initial inverse Hessian matrix is set up as,

𝐻−1
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(3Ω𝐵0)−1 0 . . . 0

0
. . . 0 . . .

...
... 0 (3Ω𝐵0)−1 0 . . .

... 0 𝑔−1
0 ⟨𝑚−1

𝑖𝑜𝑛𝑖𝑐⟩𝜔
−2
0 0

... 0
. . . 0

0 . . . 0 𝑔−1
0 ⟨𝑚−1

𝑖𝑜𝑛𝑖𝑐⟩𝜔
−2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12.10)

Ω = 𝑑𝑒𝑡(h) (12.11)

h = (1 + 𝜖)h0 (12.12)

g0 = h0
𝑇h0 (12.13)

where B0 is the bulk modulus, Ω is the cell volume, g0 is the 3𝑁 × 3𝑁 metric tensor of the initial configuration,
⟨mionic⟩ is the average ionic mass, 𝜔−2

0 is the average phonon frequency at the Γ point, and 𝜖 is the finite strain tensor.
This is a block-diagonal matrix. The upper left (9 × 9) diagonal part describes cell-cell interactions, while the bottom
right (3𝑁×3𝑁) diagonal part describes ion-ion interactions. This way, we can calculate elastic properties and phonon
frequencies at the Γ-Point [Pfrommer1997] [Aarons].

Line Search

So far we have learnt how to calculate the energy, its gradient and its Hessian with respect to nuclear positions. Now we
are interested in how to decide where the next point for which these quantities are calculated should be on the PES. In
simple terms, we need to find out where we should look after calculating the energy of a point and the local curvature
of its region. We identify the search direction, 𝑝𝑛, after every geometry relaxation step using the following expression,

p𝑛 = −H−1
𝑛 ∇𝐸(R𝑛) (12.14)

hence the next point is calculated using the search direction and an arbitrarily chosen step length, 𝜆𝑛, as follows,

R𝑛+1 = R𝑛 + 𝜆𝑛p𝑛, 𝜆𝑛 > 0 (12.15)
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Conditions for step length

The step length, 𝜆𝑛, should be determined following Wolfe’s conditions [Wolfe1969] [Wolfe1971]. In ONETEP, weak
Wolfe-Powell conditions are used. These are described in detail by Gilbert [Gilbert1997] and Yuan et al. [Yuan2017].
The following conditions should be satisfied for the next step, R𝑛+1,

𝐸(R𝑛+1) ≤ 𝐸(R𝑛) + 𝜔1𝜆𝑛∇𝐸(R𝑛)𝑇p𝑛 (12.16)

∇𝐸(R𝑛+1)𝑇p𝑛 ≥ 𝜔2∇𝐸(R𝑛)𝑇p𝑛 (12.17)

0 < 𝜔1 < 0.5 (12.18)

𝜔1 < 𝜔2 < 1 (12.19)

where 𝜔1 and 𝜔2 are constants independent of the current step. These conditions lead to a descending search direction
on the PES [Gilbert1997] [Yuan2017]. They also help with the convergence of the optimisation algorithm [Gilbert1997]
[Yuan2017].

Limited-Memory BFGS (L-BFGS)

The limited-memory BFGS (L-BFGS) method can be useful when we have large systems, hence the computational
cost of calculating the Hessian matrix is very high. In L-BFGS, the Hessian, that is a (3N + 9) × (3N + 9) matrix,
where N is the number of atoms in the system, is not stored in full. A set of vectors of length N is stored instead, hence
the optimisation converges at a linear rate. An approximate Hessian matrix is constructed based on the matrix that was
used in the last few steps. This matrix should be sparse, symmetric, and positive-definite [Liu1989]. As in the standard
BFGS algorithm, the inverse Hessian matrix is updated at each optimisation step. In L-BFGS, we do not need to store
the Hessian but we need to access information about the positions and gradients at previous steps [Packwood2016].
We choose to store a certain number of sets of positions and gradients, namely m, and every time a new optimisation
step is made, the oldest set is removed from storage to make space for the latest set to be stored. The number of sets, m
is specified by the user. By default, ONETEP uses m equal to 30. We declare the difference in positions and gradients
between steps 𝑛− 1 and 𝑛 as sn and yn. Then, we have the following expressions [Aarons],

s𝑛 = R𝑛 −R𝑛−1 (12.20)

y𝑛 = ∇𝐸(R𝑛) −∇𝐸(R𝑛−1) (12.21)

𝜌𝑛 =
1

y𝑇
𝑛 s𝑛

(12.22)

S𝑛 =
[︀
s0, ..., s𝑛−1

]︀
(12.23)

Y𝑛 =
[︀
y0, ...,y𝑛−1

]︀
(12.24)

An initial approximation of the inverse Hessian matrix, 𝐻−1
0 , is used at the first iteration of the algorithm. In contrast

with the standard BFGS, the initial matrix approximation can be different at each step [Liu1989]. The inverse Hessian
can be updated using [Byrd1994],

H−1
𝑛 = H−1

0 +
[︀
S𝑛 H−1

0 Y𝑛

]︀
W𝑛

[︂
S𝑇
𝑛

Y𝑇
𝑛H

−1
0

]︂
(12.25)

W𝑛 =

[︂
R−𝑇

𝑛 (D𝑛 + Y𝑇
𝑛H

−1
0 Y𝑛)R−𝑇

𝑛 −R−𝑇
𝑛

−R−𝑇
𝑛 0

]︂
(12.26)

D𝑛 =

⎡⎢⎢⎢⎢⎣
s𝑇0 y0 0 . . . 0

0 s𝑇1 y1

...
...

. . . 0
0 . . . 0 s𝑇𝑛y𝑛

⎤⎥⎥⎥⎥⎦ (12.27)

234 Chapter 12. Relaxation



ONETEP Documentation, Release 7.1.8

In BFGS, H−1
𝑛 is multiplied by vector v and gives a product vector, p.

p → H−1
𝑛 v (12.28)

but in L-BFGS we do not compute H−1
𝑛 . Consequently, we need to find a way to obtain vector p. In ONETEP, this is

achieved by using the Basic Linear Algebra Subprogram (BLAS) libraries to perform matrix operations in the following
fashion as explained in detail in [Aarons],

p = H−1
0 v (12.29)

w1:𝑚 = Y𝑇
𝑛p (12.30)

w𝑚+1:2𝑚 = S𝑇
𝑛v (12.31)

w1:𝑚 → R−1
𝑛 Y𝑇

𝑛H
−1
0 v (12.32)

w𝑚+1:2𝑚 → R−1
𝑛 S𝑇

𝑛v (12.33)

Ξ = T𝑛 (12.34)

Ξ → R−1
𝑛 Ξ (12.35)

w1:𝑚 → w1:𝑚 −Ξw𝑚+1:2𝑚 (12.36)

p → p + S𝑇
𝑛w1:𝑚 (12.37)

t = −Y𝑇
𝑛w𝑚+1:2𝑚 (12.38)

p → p + H−1
0 t (12.39)

where, w, t are vectors of lengths 2m and n, respectively. Ξ is a m × m matrix. The L-BFGS algorithm uses this
procedure until convergence.

Options

The following variables can be set when the L-BFGS algorithm is selected. The user is advised to follow the default
behaviour here. Nevertheless, there is an option to modify these settings as explained in the following text.

• L-BFGS maximum updates
This variable determines the number of vectors updated in L-BFGS. The default value is 30. This means that
30 vectors will be updated at each iteration. This variable can be controlled by the user through setting the
following parameter in the input file,

lbfgs_max_updates : [VALUE]

e.g.,

lbfgs_max_updates : 30

• L-BFGS block length
This variable determines the number of updates that are stored in an unbounded L-BFGS calculation before
reallocation. The default value is 30. This means that 30 updates will be stored. This variable can be controlled
by the user through setting the following parameter in the input file,

lbfgs_block_length : [VALUE]

e.g.,

lbfgs_block_length : 30
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• Estimated bulk modulus
The user can provide an estimate of the bulk modulus. The default value of this variable is 0.017 𝐸𝐻 𝑎−3

0 . This
is one of the parameters used to initialize the inverse Hessian matrix. This option can be controlled by the user
through setting the following parameter in the input file,

geom_modulus_est : [VALUE] [UNITS]

e.g.,

geom_modulus_est : 0.02 Ha / bohr * * 3

• Estimated average phonon frequency
The user can provide an estimate of the average phonon frequency at the Γ-point. The default value of this
variable is 0.0076 𝐸𝐻 . This is one of the parameters used to initialize the inverse Hessian matrix. This option
can be controlled by the user through setting the following parameter in the input file,

geom_frequency_est : [VALUE] [UNITS]

e.g.,

geom_frequency_est : 0.008 Ha

or

geom_frequency_est : 0.218 eV

• Print inverse Hessian matrix
The user can choose whether to print the inverse Hessian matrix. The default value of this variable is FALSE,
so this matrix is not printed unless the user specifies otherwise. This option can be controlled by the user
through setting the following parameter in the input file,

geom_print_inv_hessian : [VALUE]

e.g.,

geom_print_inv_hessian : FALSE

Also, certain preconditioners can be used in the L-BFGS algorithm. These are the exponential (EXP) [Packwood2016]
and forcefield (FF)-based [Mones2018] preconditioners. It should be noted that no preconditioner is used by default.
Preconditioner options are preset to default values, but the user has the option to change these, if needed. These are
rcut, rNN, A, 𝜇, and they are used in the following expressions to define the preconditioner P options. Either can be
selected by setting the following variable in the input file,

geom_precond_type : [VALUE]

e.g.,

geom_precond_type : EXP

The preconditioners can be modified (if needed) by setting the appropriate variables,
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geom_precond_exp_c_stab : [VALUE]

e.g.,

geom_precond_exp_c_stab : 0.1

geom_precond_exp_a : [VALUE]

e.g.,

geom_precond_exp_a_stab : 3.0

geom_precond_exp_r_nn : [VALUE] [UNITS]

e.g.,

geom_precond_exp_r_nn : 0.1 bohr

geom_precond_exp_r_cut : [VALUE][UNITS]

e.g.,

geom_precond_exp_r_cut : 0.1 bohr

geom_precond_exp_mu : [VALUE][UNITS]

e.g.,

geom_precond_exp_mu : 0.1 Ha / bohr * * 2

geom_precond_ff_c_stab : [VALUE][UNITS]

e.g.,

geom_precond_ff_c_stab : 0.1 Ha / bohr * * 2

geom_precond_ff_r_cut : [VALUE][UNITS]

e.g.,

geom_precond_ff_r_cut : 3.8 bohr

At last, the L-BFGS algorithm can be selected by setting the geom_method variable to LBFGS in the ONETEP input
file.

Coordinate system

The user can choose if Cartesian or internal (delocalised) coordinates will be used during geometry relaxation. The
latter are generated based on the implementation by Andzelm et al. [Andzelm2001]. Cartesian coordinates are used
in all geometry relaxation methods by default. The user can select which system of coordinates to use by setting the
geom_method variable to either CARTESIAN or DELOCALIZED. For the latter, only the BFGS method is used.
The use of delocalised coordinates can improve performance of the geometry relaxation. When Cartesian coordinates
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are selected by setting the geom_method variable in the input file, the user can choose whether to do a BFGS or
L − BFGS optimisation by setting the parameter to FALSE or TRUE, respectively. This is shown below,

geom_lbfgs : [VALUE]

e.g.,

geom_lbfgs : TRUE

Two-point Steepest Descents (TPSD)

The two-point steepest descents (TPSD) optimisation algorithm is implemented in ONETEP. This is based on the
work of Barzilai and Borwein [Barzilai1988]. The update equation can be obtained in the same way as in the BFGS
algorithm. The search direction, 𝑝𝑛, can be calculated as,

𝑝𝑛 = −∇𝐸(R𝑛) (12.40)

In this method, we need to calculate the change in atomic positions, ∆R, and the gradient of the energy with respect
to atomic position, ∆(∇𝐸(R)), between the current iteration, 𝑖, and the previous one, 𝑖− 1. Please note that in what
follows in this section, we will just rename the quantity ∇𝐸(R𝑖) to g𝑖 for simplicity.

∆R = R𝑖 −R𝑖−1 (12.41)

∆g = g𝑖 − g𝑖−1 (12.42)

consequently, the step length, 𝜆𝑛, is calculated either as,

𝜆𝑛 =
∆R · ∆g

∆g · ∆g
(12.43)

this way we minimise the quantity ‖∆R−𝜆∆g‖2 with respect to 𝜆. In ONETEP, this equation is used to calculate the
step length, 𝜆𝑛, by default. Symmetrically, we can use,

𝜆𝑛 =
∆R · ∆R

∆R · ∆g
(12.44)

to minimise the quantity ‖𝜆∆R− ∆g‖2 with respect to 𝜆.

At last, the TPSD algorithm can be selected by setting the geom_method variable to TPSD in the ONETEP input file.

ASE Optimizers

In addition to the optimisation algorithms implemented in ONETEP, all optimisation algorithms available in the Atomic
Simulation Environment (ASE) [ase_optimizers_website] can be used as well. This can be done through the interface
between ONETEP and ASE [onetep_ase_interface]. This way, ONETEP works as the calculator that ASE uses to
compute the energy and forces of a given system at each step of the relaxation process. Then, the propagation of
the geometry relaxation process, i.e., the search direction, step length, and propagation formula, is handled by the
optimisation algorithm selected in ASE.

12.1.5 Using the interface between ONETEP and the Atomic Simulation Environ-
ment (ASE)

Requirements

Before using the ONETEP / ASE interface, we need to make sure that we have installed python (preferably version 3
as the following code is written using python3 syntax). Then, we should have installed the following python packages:
ASE (Atomic Simulation Environment), and OS (Operating System). The OS package lets us execute ONETEP as
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well as read and write ONETEP files. A couple of important packages that is highly recommended to be installed
are NumPy (Numerical Python) and SciPy (Scientific Python). These handle advanced numerical (e.g., linear algebra,
powers, etc.) and scientific calculations (e.g., integration, interpolation, etc.), respectively. The ASE package allows
for the manipulation of atomic/molecular systems. An interface between ONETEP and ASE is already in place and it
lets us call ONETEP from ASE, make calculations in ONETEP, and communicate back with ASE. The advantages of
using ASE with ONETEP are numerous. A number of these advantages is given in the following list,

• Optimisers built in ASE can be used to drive geometry relaxation in addition to the ones available in ONETEP.

• Molecular systems can be manipulated, e.g., translated and rotated inside the unit cell.

• Various python packages focused on molecular systems can be used in conjunction with the ASE/ONETEP
interface. For example, packages for global optimisation can be used to find the global minimum on the PES.

• We can easily convert between popular molecular input/output files. For example, we can convert a .cif file that
contains crystallographic data to an .xyz atomic coordinate file that can be used in ONETEP.

• ASE can be used as a standalone visualisation package. For example, it can be used to visualise a trajectory of
atomic positions.

The aforementioned packages can be installed using

python3 -m pip install package_name

where one should replace package_name with the name of the package to be installed. For example,

python3 -m pip install ase

In our case the names of the packages are,

• os

• ase

and optionally,

• numpy

• scipy

ONETEP / ASE interface using intrinsic optimisation algorithms

In this example, we see how to use the ONETEP / ASE interface while opting for an optimisation algo-
rithm that is already implemented in ONETEP. The following code can be written (saved) to a file called
input_intrinsic_algorithm.py. Then, we could run our ONETEP calculation by just running this python script as
follows,

python3 input_intrinsic_algorithm.py > output_intrinsic_algorithm.log

where we redirect the output to a file called output_intrinsic_algorithm.log.

This way, ASE creates an input file for ONETEP, then ONETEP performs the geometry relaxation, and it communicates
the energy and forces back to ASE for post-processing and visualisation.

from os import environ, path
from ase.build import molecule
from ase.calculators.onetep import Onetep
from ase.io import read,iread,write

# set ONETEP run command by providing the full
# path to the ONETEP executable. Here we also
# set the number of MPI ranks and threads per rank
# based on what resources we have asked for.

(continues on next page)
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environ["ASE_ONETEP_COMMAND"]="export OMP_NUM_THREADS=$SLURM_THREADS_PER_CORE; srun -n
→˓$SLURM_NPROCS /path/to/onetep/bin/onetep PREFIX.dat >> PREFIX.out 2> PREFIX.err"

# read atomic positions from an .xyz file
# that is in the same directory.
mol = read('./mymolecule.xyz')

# set lattice vectors (in Angstrom)
# replace xx, xy, xz, yx, yy, yz,
# zx, zy, zz with desired values
# for the lattice vectors
mol.set_cell([[xx,xy,xz],

[yx,yy,yz],
[zx,zy,zz]])

# set calculator as Onetep and a
# label for input and output files.
calc_label = 'mylabel'
calc = Onetep(label=calc_label)

# set Onetep parameters (left-hand side) and
# corresponding values (right-hand side).
# change atom name "A" and any other
# value you want in the code below.
calc.set(pseudo_path='/path/to/pseudo/',

pseudo_suffix='.recpot',
task='GeometryOptimization',
geom_method='TPSD',
geom_force_tol='0.05 "ev/ang"',
write_forces=True,
write_xyz=True,
xc='PBE',
cutoff_energy='1200 eV',
species_ngwf_number={"A":10},
species_ngwf_radius={"A":12.0}, # [bohr]
write_hamiltonian=True,
write_tightbox_ngwfs=True,
write_denskern=True,
output_detail='verbose',
)

# perform the calculation
mol.calc = calc

# get atomic positions, energy, and forces from the
# calculator. In our case, the calculator is ONETEP.
mol.get_positions()
mol.get_forces()
mol.get_potential_energy()
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ONETEP / ASE interface using ASE optimisation algorithms

In this example, we see how to use the ONETEP / ASE interface while opting for an optimisation algorithm that is
implemented in ASE. The following code can be written (saved) to a file called input_ase_algorithm.py. Then we
could run our ONETEP calculation by just running this python script as follows,

python3 input_ase_algorithm.py > output_ase_algorithm.log

where we redirect any output to a file called output_ase_algorithm.log.

This way, ASE creates an input file for ONETEP, then ONETEP calculates the energy and forces, and it communicates
the energy and forces back to ASE, then ASE updates the structure until the desired convergence threshold has been
reached. Final structures, energy, and forces are available in ASE for post-processing and visualisation.

from os import environ, path
from ase.build import molecule
from ase.calculators.onetep import Onetep
from ase.optimize.sciopt import SciPyFminBFGS
from ase.io import read,iread,write

# set ONETEP run command by providing the full
# path to the ONETEP executable. Here we also
# set the number of MPI ranks and threads per rank.
# based on what resources we have asked for.
environ["ASE_ONETEP_COMMAND"]="export OMP_NUM_THREADS=$SLURM_THREADS_PER_CORE; srun -n
→˓$SLURM_NPROCS /path/to/onetep/bin/onetep PREFIX.dat >> PREFIX.out 2> PREFIX.err"

# read atomic positions from an .xyz file
# that is in the same directory.
mol = read('./mymolecule.xyz')

# set lattice vectors (in Angstrom)
# replace xx, xy, xz, yx, yy, yz,
# zx, zy, zz with desired values
# for the lattice vectors.
# For orthogonal cells, you can set the cell as
# mol.set_cell([xx,yy,zz])
mol.set_cell([[xx,xy,xz],

[yx,yy,yz],
[zx,zy,zz]])

# set calculator as Onetep and a
# label for input and output files.
calc_label = 'mylabel'
calc = Onetep(label=calc_label)

# set ONETEP parameters (left-hand side) and
# corresponding values (right-hand side).
# change atom name "A" and any other
# value you want in the code below.
calc.set(pseudo_path='/path/to/pseudo/potential/',

pseudo_suffix='.recpot',
task='SinglePoint',
xc='PBE',
cutoff_energy='1200 eV',

(continues on next page)
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species_ngwf_number={"A": 10},
species_ngwf_radius={"A": 12.0}, # [bohr]
write_hamiltonian=True,
write_tightbox_ngwfs=True,
write_denskern=True,
output_detail='verbose',
)

# these files need to be read to
# update the relaxation process.
if path.isfile(calc_label + '.dkn') == True:

calc.set(read_denskern=True)
if path.isfile(calc_label + '.ham') == True:

calc.set(read_hamiltonian=True)
if path.isfile(calc_label + '.tightbox_ngwfs') == True:

calc.set(read_tightbox_ngwfs=True)

# perform the calculation
mol.calc = calc

# get energy and forces from the calculator
# in our case, the calculator is ONETEP.
mol.get_forces()
mol.get_potential_energy()

# select optimisation algorithm and relevant options.
# Here, we select the SciPyFminBFGS algorithm and
# we write the trajectory to a .traj file.
opt = SciPyFminBFGS(mol, trajectory='opt.traj')

# optimise structure until the maximum force on any
# atom is equal or less than 0.05 (units are eV/A).
opt.run(fmax=0.05)

# convert ASE trajectory (.traj) to .xyz format
trj = iread("opt.traj")
trj_xyz = write("opt_traj.xyz", trj, format="xyz")

12.1.6 Tutorials
In this section, a series of tutorials is demonstrated. Please create a separate folder (directory in Unix-based systems,
such as Linux distributions) for each one of the tutorials, and put all files of each tutorial in the corresponding folder.
We will learn how to create a guess geometry for a certain system, e.g., a set of atoms, a molecule, a molecular cluster,
and then relax it using ONETEP. These examples include an ethanol molecule and a platinum nanoparticle. We note
that the focus of these tutorials is to learn how to use optimisation algorithms in ONETEP, and these can be applied to
much more complicated systems following the same rationale as in these tutorials.

Ethanol

At first, we are going to relax the geometry of a simple organic molecule that is ethanol (𝐶2𝐻5𝑂𝐻). A guess geometry
can be provided either directly in the ONETEP input file or through an XYZ file that can be loaded in ONETEP. Please
create a folder named however you prefer, e.g., ethanol_example and put all files in that folder. In this example, we
are going to use the Avogadro software [Avogadro] [Hanwell2012] to create an ethanol molecule. In Avogadro, select
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the pencil icon from the toolbar at the top. Then, select Carbon from the “Draw” toolbar by clicking on the box right
next to “Element” on the left hand side. Click and drag somewhere on the black canvas so that a C-C single bond is
created and Avogadro will automatically adjust hydrogen atoms to make it a 𝐶𝐻3𝐶𝐻3 molecule. Select Oxygen in
the same way as carbon was previously selected. Click on a carbon atom on the black canvas and drag to make a C-O
bond (again, hydrogen atoms will be adjusted automatically). Use the auto-optimize tool that is on the same toolbar
as the pencil icon (it has an E sign and a down-pointing arrow below E). This will do a rough relaxation to provide
a reasonable initial guess geometry. At last, click on “File” that is the left-most option on the top toolbar and click
either on “save as” or hover the mouse over export and then click on “molecule”. A new window will appear, where the
coordinates can be saved in an XYZ file. Click on “All files” at the bottom right and select “XYZ”, then select a name
for the file while including the .xyz extension (for example, ethanol.xyz). Exit Avogadro and move this XYZ file to
the directory where the ONETEP simulation will be performed. The XYZ format is a readable text file which can be
viewed and modified with any text editor. This contains the Cartesian coordinates of all the atoms in the system. An
example ethanol.xyz is provided below,

9
XYZ file generated by Avogadro.
C -4.63004 0.41911 0.07151
C -3.76666 1.67624 0.06260
H -4.34884 -0.23171 0.89807
O -2.40610 1.40089 -0.17922
H -2.09824 0.76731 0.47816
H -5.67688 0.68678 0.18150
H -4.50180 -0.12684 -0.85976
H -4.07361 2.34155 -0.74747
H -3.88245 2.21413 1.01544

Now that we have our molecule, we will relax its geometry in ONETEP.

ONETEP built-in optimizer

First, we are going to use optimisation algorithms which are built-in ONETEP. In this example, we choose the two-point
steepest descent, TPSD, algorithm. An ONETEP input file should have at least the following sections,

• general parameters

• lattice vectors block

• species block

• potential block

• positions block

• etc.

An example input script, ethanol_geo_opt.dat, is provided below,

# ethanol_geo_opt.dat
# general parameters
# kinetic energy cutoff
cutoff_energy : 1000 eV
# density kernel cutoff
kernel_cutoff : 1000 bohr
# level of detail of the output
output_detail : verbose
# task to be performed
task : GeometryOptimization

(continues on next page)
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# optimization algorithm
geom_method: TPSD
# tolerance for the forces to
# evaluate convergence
geom_force_tol: 0.05 "ev/ang"
# print relevant information
write_denskern : True
write_forces : True
write_hamiltonian : True
write_tightbox_ngwfs : True
write_xyz: True
# Exchange-Correlation functional
xc_functional : PBE

# lattice vectors block
# values are in angstrom (using ang keyword)
%BLOCK LATTICE_CART
ang

15.000000000 0.0000000000 0.0000000000
0.0000000000 15.000000000 0.0000000000
0.0000000000 0.0000000000 15.000000000

%ENDBLOCK LATTICE_CART

# species block
# species, name, atomic number,
# number of NGWFs, NGWF radii (in bohr)
%BLOCK SPECIES

C C 6 4 12.000000
O O 8 4 12.000000
H H 1 1 12.000000

%ENDBLOCK SPECIES

# potentials block
# species, file where the potential can be found.
# It is recommended to copy pseudopotential files to
# the directory, where we perform the calculation.
%BLOCK SPECIES_POT

C "C.recpot"
H "H.recpot"
O "O.recpot"

%ENDBLOCK SPECIES_POT

# positions in Angstrom
%BLOCK POSITIONS_ABS
ang
C -4.63004 0.41911 0.07151
C -3.76666 1.67624 0.06260
H -4.34884 -0.23171 0.89807
O -2.40610 1.40089 -0.17922
H -2.09824 0.76731 0.47816
H -5.67688 0.68678 0.18150
H -4.50180 -0.12684 -0.85976

(continues on next page)
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H -4.07361 2.34155 -0.74747
H -3.88245 2.21413 1.01544
%ENDBLOCK POSITIONS_ABS

Lines starting with # are comments so they are not read during runtime and they are helpful to explain code func-
tionality. Before proceeding, let’s copy the required pseudopotential files to the current directory by providing the
/full/path/to/onetep while using,

cp /full/path/to/onetep/pseudo/carbon.recpot C.recpot

cp /full/path/to/onetep/pseudo/hydrogen.recpot H.recpot

cp /full/path/to/onetep/pseudo/oxygen.recpot O.recpot

Please change /full/path/to/onetep/ to the directory where you installed ONETEP. Inside this directory, the
ONETEP source code (src), documentation (doc), binaries (bin), etc. are located. It will usually be something like
/home/user/software/onetep, where user is your username. We can use an example submission script to perform
this optimisation on a high performance computing (HPC) cluster. An important line that needs to be modified in this
script is the full path to the ONETEP top directory as before.

#!/bin/bash -l
#SBATCH -J ethanol # Job name on the scheduler.
#SBATCH -p batch # Queue (partition) type.
#SBATCH -N 1 # Number of nodes.
#SBATCH -n 4 # Total number of MPI ranks.
#SBATCH --mem=16G # Max memory per node.
#SBATCH -t 01:10:00 # Wallclock time in [hh:mm:ss].

# load modules
# Change the line below the comments to match your
# preferred compiler, mpi, mkl versions.
module load intel-compilers intel-mpi intel-mkl

# on Iridis5 you can use the following modules,
# module load intel-compilers/2021.2.0 intel-mkl/2021.2.0 \
# intel-mpi/2021.2.0 python/3.9.7

# on ARCHER2 you can use the following modules,
# module load PrgEnv-cray/8.1.0 cce/12.0.3 cray-fftw/3.3.8.11 \

cray-mpich/8.1.4 cray-python/3.9.7.1

# sim ID.
# Please put a name of your preference to distinguish
# this simulation. This should be the same as the
# ONETEP input file without the .dat extension.
rootname='ethanol_geo_opt'

# Number of threads per MPI rank.
# This value can be modified, even though ONETEP
# works well with 4 threads per rank for most systems.
export OMP_NUM_THREADS=4

# ONETEP top directory full path,
# e.g., "/home/user/software/onetep".

(continues on next page)
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# Need to modify this.
onetep_top="/full/path/to/onetep/"

# Relative location of the ONETEP executable file.
# e.g., ${onetep_top}/bin/onetep.x86_64_gfortran
# Need to modify the name of the executable.
onetep_exe="${onetep_top}/bin/onetep.executable"

# ONETEP launcher. No need to change this.
onetep_launcher="${onetep_top}/utils/onetep_launcher"

# Show shared libraries. No need to change this.
ldd $onetep_exe >\$ldd

# If running on Iridis5, set I_MPI_PMI_LIBRARY
# environmental variable by removing the comment
# sign '#' at the start of the next couple of lines.
#export I_MPI_PMI_LIBRARY\
#=/local/software/slurm/default/lib/libpmi.so

# If running on ARCHER2, export the python-related
# paths. The PYTHONUSERBASE path is an example, hence
# it should be modified to your needs as explained in
# the python section of the ARCHER2 documentation.
# You should copy the correct project code, e.g., t01,
# your username on ARCHER2, and change python3.9 to
# your version of python. You can export these paths
# by removing the comment sign '#' at the start of
# the next four lines.
#export PYTHONUSERBASE=/work/project_code/project_code/username/.local
#export PATH=$PYTHONUSERBASE/bin:$PATH
#export PYTHONPATH\
#=$PYTHONUSERBASE/lib/python3.9/site-packages:$PYTHONPATH

# Command to run ONETEP. No need to change this.
srun \

-N $SLURM_JOB_NUM_NODES \
-n $SLURM_NPROCS \
-e $onetep_exe \
-t $OMP_NUM_THREADS \
$onetep_launcher \
${rootname}.dat \
>${rootname}.out \
2>${rootname}.err

Note that if your run this on a local computer (not on a computing cluster), e.g., your personal desktop or laptop, then
you’ll need to remove the lines starting with #SBATCH and replace srun with mpirun, if you have installed the Intel(R)
MPI Library on your computer, so your script will become,

#!/bin/bash -l

# sim ID.
(continues on next page)
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# Please put a name of your preference to distinguish
# this simulation. This should be the same as the
# ONETEP input file without the .dat extension.
rootname='ethanol_geo_opt'

# Number of threads per MPI rank.
# This value can be modified, even though ONETEP
# works well with 4 threads per rank for most systems.
export OMP_NUM_THREADS=4

# ONETEP top directory full path.
# e.g., /home/user/software/onetep
# Need to modify this.
onetep_top="/full/path/to/onetep/top/directory"

# Relative location of the ONETEP executable file.
# e.g., ${onetep_top}/bin/onetep.x86_64_gfortran
# Need to modify the name of the executable.
onetep_exe="${onetep_top}/bin/onetep.executable"

# ONETEP launcher. No need to change this.
onetep_launcher="${onetep_top}/utils/onetep_launcher"

# Show shared libraries. No need to change this.
ldd $onetep_exe >\$ldd

# If running on Iridis5, set I_MPI_PMI_LIBRARY
# environmental variable by removing the comment
# sign '#' at the start of the next couple of lines.
#export I_MPI_PMI_LIBRARY\
#=/local/software/slurm/default/lib/libpmi.so

# Command to run ONETEP. No need to change this.
mpirun \

-np 4 \
-e $onetep_exe \
-t $OMP_NUM_THREADS \
$onetep_launcher \
${rootname}.dat \
>${rootname}.out \
2>${rootname}.err

In the example submission script, submission_script.sb, we request 1 node, 4 MPI ranks in total, 4 OpenMP threads
per MPI rank, 16 GB of memory, and 1 hour and 10 minutes to run our simulation using the batch queue, and we can
distinguish our simulation on the scheduler as it is named as ethanol. Please note that the number of MPI ranks should
be equal or less than the number of atoms in the system. Consequently, for the ethanol molecule we can ask for up to
9 MPI ranks.

Number of MPI ranks ≤ Number of atoms in the system (12.45)

Here we chose, slightly less than half that number. The total number of cores, 𝑁𝑐𝑜𝑟𝑒𝑠, we asked for can be calculated
as follows,

𝑁𝑐𝑜𝑟𝑒𝑠 = 𝑁𝑟𝑎𝑛𝑘𝑠 ×𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 (12.46)
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𝑁𝑟𝑎𝑛𝑘𝑠 = 𝑁𝑛𝑜𝑑𝑒𝑠 ×𝑁𝑟𝑎𝑛𝑘𝑠_𝑝𝑒𝑟_𝑛𝑜𝑑𝑒 (12.47)

where𝑁𝑛𝑜𝑑𝑒𝑠,𝑁𝑟𝑎𝑛𝑘𝑠,𝑁𝑟𝑎𝑛𝑘𝑠_𝑝𝑒𝑟_𝑛𝑜𝑑𝑒,𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠, are the number of nodes, the total number of MPI ranks, the number
of MPI ranks per node, and threads per MPI rank, respectively. Consequently, in this example we asked for 16 cores (4
MPI ranks in total × 4 threads per rank). We submit our script to the scheduler as a batch job using,

sbatch submission_script.sb

or we run it on a local computer using a couple of shell commands, the first one gives us permission to execute the
script, and the second one actually runs the script

chmod + x submission_script.sh

sh submission_script.sh

We can check if our script is running by looking at the queue. In SLURM, we can use the following command,

squeue − u $USER

An example output of the command is

JOBID PARTITION NAME USER ST TIME NODES NODELIST

1915382 batch ethanol user R 10 : 25 1 red465

This tells us that the job has been assigned an identification number that is 1915382, it uses the batch partition, its
name is ethanol, it is run by a user named: user, its current status is: R : Running, 10 minutes and 25 seconds have
elapsed since starting running the script, it is running on 1 node, and the name of this node is red465. When the
script completes its run, nothing will appear under the header above, as no script will be waiting/running in the queue.
Please note that if the status is PD, this means that the start of this script is pending, hence the script is waiting in the
queue. ONETEP generates certain files at runtime based on the type of calculation. In our case, the following files
were generated,

• ethanol_geo_opt.out - The calculation output.

• ethanol_geo_opt.err - Any errors occured during the calculation. If this is empty then no errors occured. Other-
wise, another file called ethanol_geo_opt.error_message will be generated, where more information about the
error(s) can be found.

• ethanol_geo_opt.tightbox_ngwfs - Information about the NGWFs generated during the calculation.

• ethanol_geo_opt.continuation - Information about restarting a geometry relaxation.

• ethanol_geo_opt.dkn - Information about the density kernel generated during the calculation.

• ethanol_geo_opt.ham - Information about the Hamiltonian used during the calculation.

• ethanol_geo_opt.geom - Trajectory of geometries, energies, and forces during relaxation.

• ethanol_geo_opt.xyz - Trajectory of geometries during relaxation in the XYZ format. This can be used/visualised
with many computational chemistry codes, and molecular visualising software.

• ethanol_geo_opt.bib - References that need to be cited for this calculation written using BIB formatting.

We open the output file and we should find a line that reads,

Finished geometry optimization after 5 iteration(s).

Total Energy − 3.110106446448E + 001 Eh

Consequently, the geometry relaxation made 5 steps and the final total energy of the system is −31.10106446448 Eh.
This number may be slightly different when you run this example on your computer or a computing cluster due to
differences in machine precision and number rounding patterns. The outcome of a geometry relaxation is a more stable
configuration of the atoms of the system. Consequently, we should visualize the relaxed geometry. We can do that
by opening the ethanol_geo_opt.xyz file in a molecular visualisation software. We can use Avogadro, or any other
software that is able to visualise molecules, to do this. There we can see that distances and angles between the atoms
have changed as they have moved to equilibrium positions in which this molecular configuration is more stable. The
optimised structure is shown in Fig. 12.1.
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Fig. 12.1: Atomic configuration of the ethanol molecule after relaxing its geometry in ONETEP. Colour code: carbon
- black, oxygen - red, hydrogen - white.
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ONETEP built-in optimizer in ASE

The same calculation can be prepared using ASE. Please create a folder named however you prefer, e.g.,
ethanol_example_ase and put all files in that folder. We will gather information about the system and calculation
parameters in one python file and ASE will generate an ONETEP input file for us. Also, you will see how we can
translate the atomic coordinates in ASE, center the molecule in the unit cell, and how ASE can automatically set lattice
vectors for us. We follow the guidance provided in Section 5.2 to create an input file in ASE. This should look like the
following for the ethanol example,

# ethanol_geo_opt_ase.py
from os import environ, path
from ase.build import molecule
from ase.calculators.onetep import Onetep
from ase.io import read,iread,write

# set ONETEP run command by providing the full
# path to the ONETEP executable. Here we also
# set the number of MPI ranks and threads per rank.
environ["ASE_ONETEP_COMMAND"]="srun -n $SLURM_NPROCS /path/to/onetep/bin/onetep PREFIX.
→˓dat >> PREFIX.out 2> PREFIX.err"

# read atomic positions from an XYZ file
mol=read('ethanol.xyz')

# center the molecule in unit cell. This
# will automatically set the unit cell,
# hence, the lattice vectors provided to ONETEP.
mol.center(vacuum=7.)

# set calculator as Onetep and a
# label for input and output files.
calc_label='ethanol_geo_opt'
calc = Onetep(label=calc_label)

# set Onetep parameters (left-hand side) and
# corresponding values (right-hand side).
calc.set(pseudo_path='./',

pseudo_suffix='.recpot',
task='GeometryOptimization',
geom_method='TPSD',
geom_force_tol='0.05 "ev/ang"',
xc='PBE',
cutoff_energy='1000 eV',
kernel_cutoff='1000 bohr',
species_ngwf_number={

"C":4,"H":1,"O":4},
species_ngwf_radius={

"C":12.0,"H":12.0,"O":12.0}, # bohr
write_denskern=True,
write_forces=True,
write_hamiltonian=True,
write_tightbox_ngwfs=True,
write_xyz=True,
output_detail='verbose',

(continues on next page)
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)

# perform the calculation
mol.calc = calc

# get atomic positions, energy and forces from the
# calculator. In our case, the calculator is ONETEP.
mol.get_positions()
mol.get_potential_energy()

We can use an example submission script to perform this optimisation by running ONETEP through ASE.

#!/bin/bash -l
#SBATCH -J ethanol # Job name on the scheduler.
#SBATCH -p batch # Queue (partition) type.
#SBATCH -N 1 # Number of nodes.
#SBATCH -n 4 # Total number of MPI ranks.
#SBATCH --mem=16G # Max memory per node.
#SBATCH -t 01:10:00 # Wallclock time in [hh:mm:ss].

# load modules
# Change the line below the comments to match your
# preferred compiler, mpi, mkl, python versions.
module load intel-compilers intel-mpi intel-mkl python

# on Iridis5 you can use the following modules,
# module load intel-compilers/2021.2.0 intel-mkl/2021.2.0 \
# intel-mpi/2021.2.0 python/3.9.7

# on ARCHER2 you can use the following modules,
# module load PrgEnv-cray/8.1.0 cce/12.0.3 cray-fftw/3.3.8.11 \

cray-mpich/8.1.4 cray-python/3.9.7.1

# Number of threads per MPI rank.
# This value can be modified, even though ONETEP
# works well with 4 threads per rank for most systems.
export OMP_NUM_THREADS=4

# If running on Iridis5, set I_MPI_PMI_LIBRARY
# environmental variable by removing the comment
# sign '#' at the start of the next couple of lines.
#export I_MPI_PMI_LIBRARY\
#=/local/software/slurm/default/lib/libpmi.so

# If running on ARCHER2, export the python-related
# paths. The PYTHONUSERBASE path is an example, hence
# it should be modified to your needs as explained in
# the python section of the ARCHER2 documentation.
# Please remember to change the project_code, e.g., t01,
# and the username on ARCHER2. Also, please update
# the python version below to the one you are using.
# You can export these paths by removing the comment

(continues on next page)
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# sign '#' at the start of the next four lines.
#export PYTHONUSERBASE=/work/project_code/project_code/username/.local
#export PATH=$PYTHONUSERBASE/bin:$PATH
#export PYTHONPATH\
#=$PYTHONUSERBASE/lib/python3.9/site-packages:$PYTHONPATH

# run ONETEP through python-ASE
python3 ethanol_geo_opt_ase.py > ethanol_geo_opt_ase_out.log

If running the script on a local computer, remove the lines starting with #SBATCH, and follow the same procedure as
in the previous example to run the script on your local computer. After running this example, an additional output file
is generated. This file is named as ethanol_geo_opt_ase_out.log and it contains the output from the python interface
between ASE and ONETEP. This is an empty file. This is due to the fact that calculations were performed only in
ONETEP and not in ASE. Calculation output can be found in ethanol_geo_opt.out once again. As in the previous
example, we can visualise the atomic configuration by opening the XYZ file with a software that is able to visualise
molecules, such as Avogadro.

Platinum nanoparticle

ASE built-in optimizer

Now we move to a more advanced example where we can relax the geometry of a platinum nanoparticle, Pt13. Please
create a folder named however you prefer, e.g., platinum_example and put all files in that folder. In this example, we
will generate the nanoparticle consisting of 13 Pt atoms in ASE and then use an ASE built-in optimisation algorithm
to relax its geometry. More information about how to generate nanoparticles in ASE can be found in the ASE manual
[ASE_nanoparticle]. In this example, we will use a pseudopotential that was generated on the fly using the CASTEP
code [CASTEP] [Pickard2006].

# generate_pt13_ase.py
from ase.cluster import Icosahedron
from ase.io import write

# create a Pt nanoparticle with 2 shells
mol = Icosahedron('Pt', 2)
# save coordinates to an XYZ file
write('pt13.xyz',mol)

Now we will load our geometry saved in an XYZ file in the script that is designed to relax the geometry. We shall place
the molecule at the center of the unit cell and add vacuum in three dimensions so that the atoms and corresponding
NGWFs are all inside the unit cell.

# pt13_geo_opt_ase.py
from os import environ, path
from ase.build import molecule
from ase.calculators.onetep import Onetep
from ase.io import read,iread,write
from ase.optimize.sciopt import SciPyFminBFGS

# set ONETEP run command by providing the full
# path to the ONETEP executable. Here we also
# set the number of MPI ranks and threads per rank.
environ["ASE_ONETEP_COMMAND"]="srun -n $SLURM_NPROCS /path/to/onetep/bin/onetep PREFIX.
→˓dat >> PREFIX.out 2> PREFIX.err"

(continues on next page)
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# load the molecule from an XYZ file
mol = read('pt13.xyz')

# Build unit cell by placing the molecule
# at the centre and add vacuum in three
# dimensions (value in Angstrom).
mol.center(vacuum=7.)

# set calculator as Onetep and a
# label for input and output files.
calc_label = 'pt13_geo_opt'
calc = Onetep(label=calc_label)

# set Onetep parameters (left-hand side) and
# corresponding values (right-hand side).
calc.set(pseudo_path='./',

pseudo_suffix='_NCP19_PBE_OTF.usp',
task='SinglePoint',
xc='PBE',
cutoff_energy='1000 eV',
kernel_cutoff='1000 bohr',
species_ngwf_number={

"Pt":13},
species_ngwf_radius={

"Pt":12.0}, # bohr
edft=True,
edft_update_scheme='pulay_mix',
edft_maxit=10,
edft_smearing_width='1000 K',
write_denskern=True,
write_forces=True,
write_hamiltonian=True,
write_tightbox_ngwfs=True,
write_xyz=True,
output_detail='verbose',
)

if path.isfile(calc_label + '.dkn') == True:
calc.set(read_denskern=True)

if path.isfile(calc_label + '.ham') == True:
calc.set(read_hamiltonian=True)

if path.isfile(calc_label + '.tightbox_ngwfs') == True:
calc.set(read_tightbox_ngwfs=True)

# perform the calculation
mol.calc = calc

# get atomic positions, energy and forces from the
# calculator. In our case, the calculator is ONETEP.
mol.get_positions()
mol.get_forces()

(continues on next page)
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(continued from previous page)

mol.get_potential_energy()

# set the optimisation algorithm to ASE built-in
# SciPyFminBFGS and save trajectory in a file.
opt = SciPyFminBFGS(mol, trajectory='opt.traj')
# perform the local optimisation until the maximum
# magnitude of the net force on any atom is 0.05 eV A^(-1).
opt.run(fmax=0.05)

# convert trajectory to the XYZ format
trj = iread("opt.traj")
trj_xyz = write("opt_traj.xyz", trj, format="xyz")

We can slightly modify submission_script_ase.sb to run this example. The modified submission script follows,

#!/bin/bash -l
#SBATCH -J pt13 # Job name on the scheduler.
#SBATCH -p batch # Queue (partition) type.
#SBATCH -N 1 # Number of nodes.
#SBATCH -n 4 # Total number of MPI ranks.
#SBATCH --mem=16G # Max memory per node.
#SBATCH -t 01:10:00 # Wallclock time in [hh:mm:ss].

# load modules
# Change the line below the comments to match your
# preferred compiler, mpi, mkl, python versions.
module load intel-compilers intel-mpi intel-mkl python

# on Iridis5 you can use the following modules,
# module load intel-compilers/2021.2.0 intel-mkl/2021.2.0 \
# intel-mpi/2021.2.0 python/3.9.7

# on ARCHER2 you can use the following modules,
# module load PrgEnv-cray/8.1.0 cce/12.0.3 cray-fftw/3.3.8.11 \
# cray-mpich/8.1.4 cray-python/3.9.7.1

# Number of threads per MPI rank.
# This value can be modified, even though ONETEP
# works well with 4 threads per rank for most systems.
export OMP_NUM_THREADS=4

# If running on Iridis5, set I_MPI_PMI_LIBRARY
# environmental variable by removing the comment
# sign '#' at the start of the next couple of lines.
#export I_MPI_PMI_LIBRARY\
#=/local/software/slurm/default/lib/libpmi.so

# If running on ARCHER2, export the python-related
# paths. The PYTHONUSERBASE path is an example, hence
# it should be modified to your needs as explained in
# the python section of the ARCHER2 documentation.
# You should copy the correct project code, e.g., t01,

(continues on next page)
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(continued from previous page)

# your username on ARCHER2, and change python3.9 to
# your version of python. You can export these paths
# by removing the comment sign '#' at the start of
# the next four lines.
#export PYTHONUSERBASE=/work/project_code/project_code/username/.local
#export PATH=$PYTHONUSERBASE/bin:$PATH
#export PYTHONPATH\
#=$PYTHONUSERBASE/lib/python3.9/site-packages:$PYTHONPATH

# run ONETEP through python-ASE
python3 pt13_geo_opt_ase.py > pt13_geo_opt_ase_out.log

In this calculation, we used Ensemble-DFT as this is a metallic system. Theory and information on how to set Ensemble-
DFT parameters can be found in the relevant section of the ONETEP manual. We remind the reader that in simple terms,
geometry relaxation is a series of single point energy calculations. The structure for which we calculate the energy at
every step is generated based on an optimisation algorithm. In this example, we performed geometry relaxation as
a series of single point energy calculations and this is why the task is set to SinglePoint in the ASE input. Then,
the search direction, step size, and ultimately, the next step that corresponds to an atomic configuration are calculated
through ASE’s built-in optimisation algorithm of choice. In this example, we used the ScipyFminBFGS optimisation
algorithm available in ASE [ase_optimizers_website]. In contrast with the previous example, the python output file
now contains useful information about the optimisation process. This is of the form of,

Step Time Energy fmax
SciPyFminBFGS: 0 10:01:57 -46453.524595 2.0483
SciPyFminBFGS: 1 10:30:45 -46454.197133 1.7570
SciPyFminBFGS: 2 11:13:25 -46455.317379 0.9590
SciPyFminBFGS: 3 11:52:19 -46455.610507 0.4268
SciPyFminBFGS: 4 12:23:07 -46455.622235 0.0579
SciPyFminBFGS: 5 12:54:25 -46455.624640 0.0093

where, the optimisation algorithm is SciPyFminBFGS, the actual time, Time, that the calculation of the step has
finished (this uses the time on the computer) is recorded, the Energy is shown in units defined in ASE (these are eV
by default), and the maximum force magnitude on any atom in the system, fmax, is provided in units defined in ASE
(these are eV· Å −1 by default). The trajectory of atomic positions is also printed in files opt.traj and opt_traj.xyz.
The latter can be visualised with popular visualisation software. The relaxed geometry of this system is shown in Fig.
12.2.

12.1.7 Summary
In this guide, we explained how to perform geometry relaxation in ONETEP. This can be achieved using either ONETEP
or ASE built-in optimisation algorithms. This way we can obtain more stable structures than our initial guess for a
given system. This is fundamental in chemistry as it can lead to many conclusions. First, we can obtain more accurate
reaction energies by optimising the reactant and product geometries, and then calculate their energies. Additionally,
we understand how different atomic arrangements affect the energy of the system and this is significant to a number of
fields including and not limited to separations, catalysis, and biological phenomena.
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Fig. 12.2: Atomic configuration of the platinum nanoparticle after relaxing its geometry in ONETEP.
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12.2 Simulation Cell Relaxation
These notes describe the usage and functionality implemented in ONETEP for the calculation of the stress tensor and
related quantities.

12.2. Simulation Cell Relaxation 257



ONETEP Documentation, Release 7.1.8

258 Chapter 12. Relaxation



ONETEP Documentation, Release 7.1.8

12.2.1 User guide

Table 12.1: Keywords table

Keyword Type Default Description
STRESS Task — Enable stress functional-

ity.
stress_tensor Logical F

Enable the calculation of
the stress tensor.

stress_elasticity Logical F

Enable the calculation of
elastic constants

stress_relax Logical F

Use the stress tensor to
optimise the cell
parameters.

stress_assumed_symmetryString nosymm

Use assumed symmetry
to minimise calculations.
Values are nosymm; 3D:
cubic

ortho, tetra1, tetra2
hexa3d, rhomb1,
rhomb2;
2D: recta, squar1,
squar2, hexa2d
NOTE: Symmetry is
assumed,
the code will not check if
it’s correct!

stress_rescale_volume Real 1.0

Rescaling for cell volume.
Might be useful for 1D or
2D systems.

stress_components Logical T T T

Which rows/columns of
the stress tensor
to compute. The flags
match X Y Z.

stress_deformation_stepReal 2.0e-3

Unitless strain parameter
in finit difference
It controls how different
the deformation
matrix is from the identity

stress_maxit_ngwf_cg Integer 10

Maximum number of
NGWF CG iterations for
total
energy calculations of
distorted cells needed
for the stress tensor.

stress_relax_energy_tolPhysical 1.0e-6 Ha

Convergence criterion for
absolute change of
energy in cell relaxation.

stress_relax_pressure Physical 0.0 Ha/Bohr**3

External pressure applied
during cell.
relaxation

stress_relax_pressure_tolPhysical 2.0e-6 Ha/Bohr**3

Convergence criterion for
absolute change of
pressure in cell relaxation

stress_relax_cell_rtolReal 1.0e-3

Convergence criterion for
relative change of c
cell parameters in cell
relaxation.

stress_relax_max_iter Integer 10 Maximum number of iter-
ations in cell relaxation

stress_relax_max_step Real 0.01

Maximum step size for
distortion in cell
relaxation.

stress_relax_atoms Logical F

Atomic positions are
relaxed together with cell
parameters.
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The keywords table lists the input parameters that are available in connection with the stress implementation. The main
functionality can be enabled by specifying the corresponding keyword (stress_tensor, stress_elasticity or
stress_relax) without providing additional options. If the default values of the unspecified options are found to be
unsuitable for the target system they can be overridden with the corresponding keyword in the input file.

The STRESS task gives access to all the features of the stress implementation. It first performs a standard self-consistent
calculation for a reference unit cell (as given in the input file), and then performs subsequent calculations according
to the requested stress-related quantities. This can be sped up quite considerably by writing out the density kernel
(write_denskern T) or Hamiltonian (write_hamiltonian T) and NGWFs (write_tightbox_ngwfs T) files at
the end of the self-consistent calculation for the reference unit cell. These should then be read for the calculations
of the distorted structures used in constructing the stress tensor (read_denskern T, read_tightbox_ngwfs T and
read_hamiltonian T). The code makes sure that the distorted cell calculations do not overwrite these files; if one is
performing a cell relaxation calculation then these files can be updated by the self-consistent calculation for each new
trial unit cell. Empirical observation: performing cell relaxation using only write_tightbox_ngwfs T shows the
most stable and robust behaviour for the test calculations that I performed so far.

Calculation of the stress tensor

The definition for the stress tensor is

𝜎𝛼𝛽 = − 1

𝑉

𝜕𝐸

𝜕𝜖𝛼𝛽
.

Here 𝑉 is the volume of the unit cell, 𝐸 is the total energy (of the unit cell), 𝜎 and 𝜖 are the stress and strain tensors,
respectively, and 𝛼, 𝛽 = 𝑥, 𝑦, 𝑧. To convert to experimental units: energy divided by volume has units of pressure. The
strain tensor describes a deformation of space away from a reference configuration: 𝑟′𝛼 = (𝛿𝛼𝛽 + 𝜖𝛼𝛽) 𝑟𝛽 (Einstein
summation convention) or r′ = (1 + 𝜖) r. For more details see Section Background — Definition of stress for a crystal.

The stress tensor is calculated starting from a self-consistent calculation for a reference unit cell, applying distortions
to those reference cell vectors, and using the corresponding total energy differences to approximate the derivatives
of the total energy with respect to the distortion parameters. This is available through the STRESS task by setting
stress_tensor to T.

Here are two examples of distortion matrices:

𝜖−𝑥𝑥 =

⎛⎝1 + ℎ 0 0
0 1 0
0 0 1

⎞⎠ , 𝜖+𝑥𝑦 =

⎛⎝ 1 +ℎ 0
+ℎ 1 0
0 0 1

⎞⎠ .

These act on the matrix of cell vectors as e.g.⎛⎝𝑎′1𝑥 𝑎′2𝑥 𝑎′3𝑥
𝑎′1𝑦 𝑎′2𝑦 𝑎′3𝑦
𝑎′1𝑧 𝑎′2𝑧 𝑎′3𝑧

⎞⎠ =

⎛⎝ 1 +ℎ 0
+ℎ 1 0
0 0 1

⎞⎠⎛⎝𝑎1𝑥 𝑎2𝑥 𝑎3𝑥
𝑎1𝑦 𝑎2𝑦 𝑎3𝑦
𝑎1𝑧 𝑎2𝑧 𝑎3𝑧

⎞⎠ .

The parameter ℎ is controlled by the keyword stress_deformation_step. As |ℎ| ≪ 1, if the calculation for the
distorted structure is started from the converged ground state obtained for the reference structure it should converge in
a handful of iterations; stress_maxit_ngwf_cg can be used to control this and avoid spending too many iterations
on a calculation that may have incorrect input and so takes too long to converge.

The stress tensor is a 3 × 3 symmetric matrix, so it has 6 independent components. Finding all these components
then requires 12 calculations for distorted cells (+ℎ and −ℎ), to form the centred differences that approximate the total
energy derivatives. This can be alleviated if the unit cell is expected to have a definite symmetry. For example, for a
cubic crystal 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 𝜎𝑧𝑧 ̸= 0 and 𝜎𝑥𝑦 = 𝜎𝑦𝑧 = 𝜎𝑧𝑥 = 0, so only two distortions are needed (𝜖+𝑥𝑥 and 𝜖−𝑥𝑥). The
keyword stress_assumed_symmetry controls the available options; see Table for a quick conversion and Table I of
Ref. for the notation and further details. NOTE: Symmetry is assumed, the code will not check if it’s correct!

The stress tensor components only make sense if the corresponding spatial directions have periodic boundary condi-
tions, which is the case of a bulk crystal. The keyword stress_components gives control over this, and if any of its
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flags is F it will override stress_assumed_symmetry to use nosymm. For example, for a 2D material with periodic
boundary conditions in 𝑥 and 𝑦 and open boundary conditions (or a thick vacuum region) in the 𝑧 direction, respec-
tively, one would specify T T F to skip calculation (and usage) of information that involves the 𝑧 direction. As another
example, consider a nanotube which is periodic in the 𝑧 direction; this would correspond to the flags F F T. Lastly,
the stress tensor should not be computed for something which is surrounded entirely by vacuum, such as a molecule.

cubic ortho tetra1 tetra2 hexa3d rhomb1 rhomb2
𝑚3̄, 𝑚3̄𝑚 𝑚𝑚𝑚 4/𝑚𝑚𝑚 4/𝑚 6/𝑚𝑚𝑚, 6/𝑚 3̄𝑚 3̄
recta squar1 squar2 hexa2d
2𝑚𝑚 4𝑚𝑚 4 6, 6𝑚𝑚

Calculation of the elastic properties

This part is still being developed, it should not be used yet.

Optimisation of the cell parameters

The stress tensor can be used to optimise the cell parameters by minimising the total energy with the STRESS task.
This feature is enabled by stress_relax T. It could also be integrated with the GEOMETRYOPTIMIZATION task (not
implemented so far).

Let us consider for simplicity that the atomic positions are fixed (relative to the unit cell vectors). We start from a unit
cell specified by the vectors {a1,a2,a3} and want to calculate the optimised vectors {a*1,a*2,a*3} that minimise the
energy of the system, and so for which the stress tensor vanishes, 𝜎𝛼𝛽({a*𝑖 }) = 0. We can relate the known input cell
parameters to the unknown optimised ones by a strain matrix,⎛⎝𝑎*1𝑥 𝑎*2𝑥 𝑎*3𝑥

𝑎*1𝑦 𝑎*2𝑦 𝑎*3𝑦
𝑎*1𝑧 𝑎*2𝑧 𝑎*3𝑧

⎞⎠ =

⎛⎝1 + 𝜖𝑥𝑥 𝜖𝑥𝑦 𝜖𝑥𝑧
𝜖𝑥𝑦 1 + 𝜖𝑦𝑦 𝜖𝑦𝑧
𝜖𝑥𝑧 𝜖𝑦𝑧 1 + 𝜖𝑧𝑧

⎞⎠⎛⎝𝑎1𝑥 𝑎2𝑥 𝑎3𝑥
𝑎1𝑦 𝑎2𝑦 𝑎3𝑦
𝑎1𝑧 𝑎2𝑧 𝑎3𝑧

⎞⎠ .

We then Taylor expand the total energy in the strain parameters,

𝐸(𝜖) ≈ 𝐸(0) +
∑︁
(𝛼𝛽)

𝜖𝛼𝛽
𝜕𝐸

𝜕𝜖𝛼𝛽

⃒⃒⃒⃒
𝜖=0

+
1

2

∑︁
(𝛼𝛽),(𝛼′𝛽′)

𝜖𝛼𝛽 𝜖𝛼′𝛽′
𝜕2𝐸

𝜕𝜖𝛼𝛽𝜕𝜖𝛼′𝛽′

⃒⃒⃒⃒
𝜖=0

.

For the stress to vanish we evaluate the first derivative w.r.t. the strain parameters and set it to zero:

0 =
𝜕𝐸

𝜕𝜖𝛼𝛽

⃒⃒⃒⃒
𝜖 ̸=0

=
𝜕𝐸

𝜕𝜖𝛼𝛽

⃒⃒⃒⃒
𝜖=0

+
∑︁

(𝛼′𝛽′)

𝜖𝛼′𝛽′
𝜕2𝐸

𝜕𝜖𝛼𝛽𝜕𝜖𝛼′𝛽′

⃒⃒⃒⃒
𝜖=0

.

The first derivative of the total energy is approximated by centred differences, but this also provides enough information
to approximate the diagonal part of the matrix of second derivatives (𝛼′𝛽′ = 𝛼𝛽). This leads to an approximate
Newton-like step to solve for the strain parameters 𝜖𝛼𝛽 :

𝜖𝛼𝛽 = − 𝜕𝐸

𝜕𝜖𝛼𝛽

⃒⃒⃒⃒
𝜖=0

(︃
𝜕2𝐸

𝜕𝜖2𝛼𝛽

⃒⃒⃒⃒
⃒
𝜖=0

)︃−1

,

which is implemented as the cell relaxation method for fixed atomic positions.

In practice the optimisation of the cell parameters will not converge in one iteration. The maximum number of iterations
or trial unit cells is controlled by stress_relax_max_iter. The magnitude of the deformation is controlled by
stress_relax_max_step, which ensures that |𝜖𝛼𝛽 | does not exceed the specified value. There are three convergence
criteria that must be satisfied simultaneously. stress_relax_energy_tol ensures that the change in total energy
per atom between consecutive trial unit cells is below a given value, stress_relax_pressure_tol checks that the
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pressure of the current unit cell is below a target value, and stress_relax_acell_tol monitors the relative change
in cell parameters, max |Δ𝑎𝑖𝛼|

max |𝑎𝑖𝛼| .

The atomic positions can also be optimised in tandem with the cell parameters. This is enabled by the flag
stress_relax_atoms. The calculation will start by first optimising the atomic positions with fixed cell parame-
ters, and then it will create a guess at the cell parameters to try next. If all the convergence thresholds for the cell
optimisation are met the calculation ends, otherwise it keeps iterating by reoptimising the atomic positions and then
making a new guess for the cell parameters. The optimisation of the atomic positions proceeds in the same way as with
the GEOMETRYOPTIMIZATION task, and the corresponding keywords/flags can be used to control the same aspects of
that process.

External pressure can included during cell relaxation using stress_relax_pressure. This will be added to the
diagonal elements of the stress tensor which are not set to zero by the assumed symmetry in the calculation. Positive
values of pressure will lead to a compression of the unit cell volume.

12.2.2 Background — Definition of stress for a crystal
These notes follow the original papers by Nielsen and Martin [Nielsen1983] [Nielsen1985] [Nielsen1985b] and the
discussion in Chapter 3 of the book of Martin [Martin2008]. The definition for the stress tensor is

𝜎𝛼𝛽 = − 1

𝑉

𝜕𝐸

𝜕𝜖𝛼𝛽
.

Here 𝑉 is the volume of the unit cell, 𝐸 is the total energy (of the unit cell), 𝜎 and 𝜖 are the stress and strain tensors,
respectively, and 𝛼, 𝛽 = 𝑥, 𝑦, 𝑧. To convert to experimental units: energy divided by volume has units of pressure.
1GPa = 10kbar = 109𝑗/𝑚3, so it’s enough to convert the energy to Joule and the volume to cubic meters.

The strain tensor describes a deformation of space away from a reference configuration: 𝑟′𝛼 = (𝛿𝛼𝛽 + 𝜖𝛼𝛽) 𝑟𝛽 (Einstein
summation convention) or r′ = (1 + 𝜖) r. The way this works is easiest to understand in one dimension and for a one-
particle wave function Ψ(𝑥), defined in the interval [0, 𝐿] which is the unit cell for this example. Suppose that the
unit cell is stretched to [0, 𝐿′] with 𝐿′ = (1 + 𝜖)𝐿, and so the wave function will also be stretched to ̃︀Ψ(𝑥′) with the
coordinate in the stretched unit cell being related to the starting one by 𝑥′ = (1 + 𝜖)𝑥. This is illustrated in Fig. 12.3.
The wave function at the stretched coordinate is almost the same as the wave function at the unstretched coordinate,

̃︀Ψ(𝑥′) = 𝐶 Ψ((1 + 𝜖)−1𝑥′) = 𝐶 Ψ(𝑥) ,

where 𝐶 is a constant to be determined. [This is usually horribly confusing; a function returns a specified output for a
given input, so if we want to know what is the value of the wave function ̃︀Ψ at 𝑥′ we need to first transform that to the
input for the wave function Ψ that will generate the correct output.] The remaining difference is that the wave function
has to be normalised to the unit cell,∫︁ 𝐿

0

d𝑥 |Ψ(𝑥)|2 = 1 =⇒
∫︁ 𝐿′

0

d𝑥′ |̃︀Ψ(𝑥′)|2 = (1 + 𝜖)𝐶2

∫︁ 𝐿

0

d𝑥 |Ψ(𝑥)|2 ,

and so the complete relation is ̃︀Ψ(𝑥′) = (1 + 𝜖)
−1/2

Ψ((1 + 𝜖)−1𝑥′). Intuitively, the volume element is changed as
d𝑥′ = (1 + 𝜖) d𝑥, so the normalisation is adjusted to compensate.

Moving now to the usual three-dimensional problem and to a crystalline setting, we first express the position vector in
terms of the vectors defining the reference unit cell:

r = 𝑟1 a1 + 𝑟2 a2 + 𝑟3 a3 .

In Cartesian coordinates this looks like ⎛⎝𝑥𝑦
𝑧

⎞⎠ =

⎛⎝𝑎1𝑥 𝑎2𝑥 𝑎3𝑥
𝑎1𝑦 𝑎2𝑦 𝑎3𝑦
𝑎1𝑧 𝑎2𝑧 𝑎3𝑧

⎞⎠⎛⎝𝑟1𝑟2
𝑟3

⎞⎠ .
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Fig. 12.3: One-dimensional example of coordinate stretching. Comparing the wave function in the stretched coordinate
system to the one in the original coordinates shows that its centre (nuclear position) and its amplitude (normalisation)
are both changed by the scaling

The transformation defining the action of the strain tensor 𝜖 on the crystal can then be converted into a deformation of
the unit cell:

The strain tensor is assumed symmetric; a skew-symmetric part would represent a homogeneous rotation of the whole
crystal which should leave the energy invariant. The elements of the strain tensor have a simple interpretation when the
unit cell vectors are proportional to the unit vectors defining the cartesian axes (e.g., orthorhombic cell): the diagonal
elements 𝜖𝛼𝛼 (𝛼 = 𝑥, 𝑦, 𝑧) represent a stretching or compression along the respective unit cell vector or cartesian axis
(angles between the unit cell vectors are preserved), while the off-diagonal elements represent shear (the angle between
the involved pair of unit cell vectors changes).

It is also common to map the subscripts to integers (Voigt notation),

(𝜖𝑥𝑥, 𝜖𝑦𝑦, 𝜖𝑧𝑧, 2𝜖𝑦𝑧, 2𝜖𝑥𝑧, 2𝜖𝑥𝑦) → (𝜖1, 𝜖2, 𝜖3, 𝜖4, 𝜖5, 𝜖6) .

To understand how that factor of 2 propagates see the chapter on elasticity of Kittel’s book [Kittel2004] .

The strain can also be represented in a form which uses directly the unit cell vectors. Defining

a*1 =
a2 × a3
𝑉

, a*2 =
a3 × a1
𝑉

, a*3 =
a1 × a2
𝑉

, a𝑖 · a*𝑗 = 𝛿𝑖𝑗 , 𝑉 = a1 · (a2 × a3) ,

we can write

𝜖 =
∑︁
𝑖,𝑗

𝜖𝑖𝑗 a𝑖 ⊗ a*𝑗 .

This is in general not a symmetric tensor in Cartesian components, but we enforce 𝜖𝑖𝑗 = 𝜖𝑗𝑖. It also only makes life
easier if it acts on the matrix of cell vectors from the left,

𝜖a1 = 𝜖11 a1 + 𝜖12 a2 + 𝜖13 a3 ,

𝜖a2 = 𝜖22 a2 + 𝜖12 a1 + 𝜖23 a3 ,

𝜖a3 = 𝜖33 a3 + 𝜖13 a1 + 𝜖23 a2 .

The different elements can then be interpreted as effecting a stretch/compression of the respective unit cell vector (𝜖𝑖𝑖)
or shears (𝜖𝑖𝑗 with 𝑖 ̸= 𝑗), which bring cell vectors 𝑖 and 𝑗 towards/away from each other.

To be investigated:

𝜎 =
∑︁
𝑖,𝑗

𝜎𝑖𝑗 a𝑖 ⊗ a*𝑗 , 𝜎𝑖𝑗 = − 1

𝑉

𝜕𝐸

𝜕𝜖𝑖𝑗
?
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12.2.3 Computing the stress tensor
Ref. [Knuth2015] has nice derivations and a discussion of finite-difference tests in Section 4. For Projector Augmented
Wave (PAW) specifics I looked at Ref. [Kresse1999] , but sadly they wrote “[. . . ] it is also easy to evaluate the stress
tensor. We will neither give the full derivation nor the final results here, as the expressions are rather cumbersome and
difficult to write in a compact form.”

The straightforward numerical calculation by finite differences proceeds in the obvious way (here using the central
difference formula):

𝜕𝐸tot

𝜕𝜖𝛼𝛽
≈ 𝐸tot(𝜖𝛼𝛽 = +ℎ) − 𝐸tot(𝜖𝛼𝛽 = −ℎ)

2ℎ
≡ ∆𝐸tot

∆ℎ
,

where the total energies are obtained from self-consistent calculations for the deformed unit cell with only one finite
element in the strain tensor. The atomic positions should either be given in internal coordinates or otherwise their
Cartesian coordinates have to be scaled. The unitless ℎ has to be tuned via numerical tests, but values ℎ < 0.01 are
mentioned as reasonable in Ref. [Knuth2015] ; for example Nielsen and Martin used ℎ = 0.004 [Nielsen1985b].
To fully populate the stress tensor using the central difference scheme for the general case one then requires 12 self-
consistent calculations.
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13.1.1 Introduction to Density Functional Tight Binding (DFTB)
Density Functional Tight binding models have been derived by a Taylor expansion of the DFT energy functional in
terms of the electron density and truncation up to a certain order in the expansion [Foulkes1989]. Within DFTB, the
following eigenvalue equations are solved via diagonalization:

𝐻𝛼𝛽𝑀
𝛽
𝑖 = 𝑆𝛼𝛽𝑀

𝛽
𝑖 𝜖𝑖, (13.1)

where 𝐻𝛼𝛽 is the hamiltonian matrix, 𝑆𝛼𝛽 is the overlap matrix, 𝑀𝛽
𝑖 are the orbital coefficients, and 𝜖𝑖 are energy

eigenvalues. The Hamiltonian is built from parameters. [Elstner1998] proposed a self consistent charge (SCC) ex-
tension to the traditional DFTB approach, which optmizes the atomic charges self consistently. Henceforth, a series
of SCC DFTB methods have been developed [Gaus2014]. Recently, non-SCC methods have undergone a revival be-
cause of their speed and applicability to large systems [Bannwarth2020]. E.g. GFN0 is one such method where atomic
charges are found using a charge equilibriation scheme [Pracht2019]. The total energy in GFN0 also includes zeroth
order terms such as dispersion, repulsion, electrostatic interactions and short range basis correction.

We have implemented the GFN0 method taking the advantage of linear-scaling capabilities of ONETEP. Here we
include D2 dispersion correction [Grimme2006] instead of D4 [Caldeweyher2019]. The standard ensemble-DFT sub-
routines are used for diagonalization and calculation of electronic energies and forces. The parameter files are available
in [utils-devel].
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13.1.2 Keywords
• dftb: T/F

[Boolean, default dftb: F].
If true, it enables DFTB calculations.

• dftb_method: GFN0

[Text, default dftb_method: GFN0].
Variant of the DFTB method, only GFN0 has been implemented at the moment.

• dftb_method_param_file: file address

[Text, default dftb_method_param_file: param_gfn0-xtb.txt].
Path to the parameter file. A specimen file is supplied in utils-devel/dftb folder.

• dftb_common_param_file: file address

[Text, default dftb_common_param_file: param_gfn_common.txt].
Path to the file for common GFN parameters. A specimen file is supplied in utils-devel/dftb folder.

• dftb_bc: O O O / P P P

[Boolean, default dftb_bc: P P P].
Boundary conditions. Only fully open (O O O) or full periodic (P P P) are implemented.

• dftb_coord_cutoff: 50.0 ang

[Real Physical, default dftb_coord_cutoff: 40.0 bohr].
Cutoff distance for truncating interactions for calculating coordination numbers. Refer to eq. (10) of
[Pracht2019].

• dftb_rep_cutoff: 50.0 ang

[Real Physical, default dftb_rep_cutoff: 40.0 bohr].
Cutoff distance for truncating interactions for calculating repulsion energy. Refer to eq. (3) of
[Pracht2019].

• dftb_srb_cutoff: 20.0 ang

[Real Physical, default dftb_srb_cutoff: 14.14 bohr].
Cutoff distance for truncating interactions for calculating short-range basis correction energy. Refer to
eq. (4) of [Pracht2019].

• dftb_ewald_parameter: 5.0 ang-1

[Real Physical, default dftb_ewald_parameter: -1.0 bohr-1].
If positive, this value is used as the parameter for Ewald summation for periodic electrostatic
interactions. Otherwise, the optimum parameter for ewald summation is calculated on the fly.

• dftb_cartesian_ngwfs: T/F

[Boolean, default dftb_cartesian_ngwfs: F].
If true, the program uses Cartesian Gaussian orbitals, otherwise the program uses spherical orbitals as
basis. Note that the currently implemented GFN0 method has been developed for a basis of spherical
orbitals and may give incorrect results with Cartesian orbitals.

• dftb_overlap_analytical: T/F

[Boolean, default dftb_overlap_analytical: T].
If false, elements of the overlap are calculated via integrals on grid, otherwise analytically. Note that the
gradients of overlap matrix on grid are not yet implemented.
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How quickly ONETEP runs your calculations depends on a number of factors. Choosing the number of nodes, processes
and threads has already been described in Running ONETEP in parallel environments.

Here we mention techniques that can be used in addition to an efficient parallel decomposition to improve performance.

14.1 Fast sparse-to-dense and dense-to-sparse conversions
In many scenarios, ensemble DFT calculations being a notable example, ONETEP needs to convert between two matrix
representations – a distributed sparse one (“SPAM3”), and a distributed dense one (“BLACS”). These conversions
happen multiple (hundreds) times in a run, and involve substantial data communication. There are two ways in which
ONETEP can do these – conveniently termed “slow” and “fast”.

The slow approach is the only approach available until ONETEP 6.1.21. Starting from ONETEP 6.1.22, a fast approach
is also available, and is the default. This means that no action is required on your part to use the fast approach. The
fast approach is up to several times faster (for this part of the calculation).

You can check which approach you are using by examining the timings printed out at the end of your calculation
(provided you are not using timings_level 0). If your timings include sparse_spam3toblacs_real_fast
and sparse_blacstospam3_real_fast – you are using the fast approach. If instead you have
sparse_spam3toblacs_real_slow and sparse_blacstospam3_real_slow – you are using the slow approach.

To switch between the approaches use:
• fast_dense_to_sparse T and fast_sparse_to_dense T – for the fast approach,

• fast_dense_to_sparse F and fast_sparse_to_dense F – for the slow approach.

The fast approach is currently incompatible with the image comms subsystem needed by NEB. This means you cannot
use the fast approach with NEB. Please add fast_dense_to_sparse F and fast_sparse_to_dense F to your
input file when using NEB.

14.2 Fast density calculation (for users)
This is a user-level explanation – for developer-oriented material, see Fast density calculation (for developers). All of
the text below applies to ONETEP 7.3.53 and later. Certain subsets of the functionality described below have been
available earlier (starting from 7.1.8), but some things, including defaults, changed in the meantime. Make sure you
are using ONETEP 7.3.53 or later.
Calculating the electronic charge density is one of the more time-consuming operations in ONETEP. In a typical cal-
culation it has to be performed hundreds of times. There are two ways in which ONETEP can calculate the density –
conveniently termed “slow” and “fast”.
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The slow approach is the only approach available until ONETEP 7.1.7. Starting with ONETEP 7.1.8, a fast approach
is also available, but it is not the default. This means that action is required on your part to use the fast approach. The
fast approach is up to several times faster, (for this part of the calculation), and up to 15 times faster when running on
a GPU, but that depends heavily on the system. It does require more memory.

The fast approach works best for “serious” systems, it’s not meant to address scenarios with KE cutoffs below
700-800 eV or NGWFs smaller than 8.0 a0. It will also not perform well when your FFT-box is small (say, below
80 x 80 x 80 points), as happens e.g. for very small periodic supercells. In this case it can actually be slower.
To switch between the approaches use:

• fast_density T – for the fast approach,

• fast_density F – for the slow approach.

Be aware that the fast approach is an approximation. The approximation is well-controllable, which means you can
get as close with the accuracy to the slow (exact) approach as you like, albeit sacrificing performance as you do so.
Conversely, you can make the fast approach as fast as you like, but you will be sacrificing accuracy, up to a point
of making your results worthless. This means care must be taken when changing the parameters of this approach –
non-expert users are advised to use the defaults, or even “safe settings” described below.

Starting from ONETEP 7.3.53 there are actually two different fast density methods implemented. They offer the prac-
tically same accuracy for the same settings (see below), but employ different tradeoffs between memory use and per-
formance. As a user, about the only thing you need to know is:

• fast_density_method 1 is usually the fastest, but requires the most memory,

• fast_density_method 2 is usually somewhat slower than method 1, but still much faster than the slow (de-
fault) calculation. It has two important advantages – it uses much less memory than fast_density_method
1, and it has been GPU ported. If you are running on GPUs, you should be definitely using this option.

The default (once you specified fast_density T) is fast_density_method 2 (starting from ONETEP 7.3.53).

You can check which approach you are using by examining the timings printed out at the end of your calculation
(provided you are not using timings_level 0). If your timings include density_fast_new_ngwfs – you are using
one of the fast approaches. If instead you have density_on_dbl_grid and density_batch_interp_deposit –
you are using the slow approach.

The main idea behind the fast density approach is trimming interpolated NGWFs, that is, ignoring the points whose
(absolute) values are below a prescribed threshold. The value of this threshold, set by trimmed_boxes_threshold
is the main parameter controlling the balance between accuracy and efficiency. This parameter is independent of
NGWF radii. It also already includes grid weights, so you do not need to adjust it when changing psinc_spacing or
cutoff_energy.

Since this is possibly the only parameter worth adjusting, here’s a more detailed description.

Positive values of trimmed_boxes_threshold define the threshold below which NGWF values on the double grid are
ignored (“trimmed”). A reasonable value is 1E-6, which should not interfere with NGWF convergence to the default
RMS gradient thresholds (which is ngwf_threshold_orig 2E-6). If you need to converge tighter (this can happen
e.g. when you set elec_energy_tol), consider reducing this value to get more accuracy – e.g. to 5E-7 or 2E-7 (this
is already very tight). You probably don’t want to decrease the threshold below 1E-7. To make your calculation faster,
increase the threshold – probably not above 1E-5.

A negative value of trimmed_boxes_threshold turns on adaptive thresholding – the threshold will start at 1E-5
and will progressively decrease during NGWF convergence. A value of -1.0 will set the threshold to a quarter of the
numerical value of the NGWF RMS gradient, but never larger than 1E-5. In practice, this means you’ll start at 1E-5 for
the first few iterations, and then as your NGWF RMS gradient goes down, so will the threshold. The tighter you want
to converge your NGWFs, the tighter the threshold will become. This frees you from worrying about this parameter.
Starting from ONETEP 7.3.40, -1.0 is the default if you are optimising NGWFs. If maxit_ngwf_cg is non-positive
(implying fixed NGWFs), 1E-6 is used instead – there is nothing to adapt between NGWF steps, because there are no
NGWF steps then.
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In the unlikely case where you’d want to keep adaptive thresholding but control how it is coupled to the NGWF RMS
gradient, you can choose a different negative value. -0.5 will make the threshold equal to an eighth of the numerical
value of the NGWF RMS gradient, -2.0 to a half, and so on. The cap always remains at 1E-5.

If you use trimmed_boxes_output_detail VERBOSE (or higher), ONETEP will print out a summary of the approx-
imation every time NGWFs change. It will look similar to Fig. 14.1. This includes the current value of the trimming
threshold (first line), and the quality of the approximation (accuracy of approximation). The latter tells you to how
many digits the approximated NGWF charge is equal to the exact (double FFT-box) NGWF charge, in the root-mean-
square sense over all NGWFs in the system. In this example our approximated charge is no further from 1.0 (a correctly
normalized NGWF) than ~1E-8.

As your calculation progresses, this value will fluctuate, and is likely go down slightly, as the NGWFs become more
diffuse. As a rule of thumb, if it gets below 5.0-6.0, you will have difficulty converging NGWFs to the default threshold.
If it is above 9.0, you are probably using too much accuracy, losing efficiency as you do that.

Fig. 14.1: The summary printed by fast density every time the NGWFs change. Of main interest are: accuracy of
approximation (shown in red) and estimated high-memory watermark per MPI rank (shown in yellow).

Another notable quantity in Fig. 14.1 shown in the last line. Depending on method, it can be called Final NGWF data
memory load or estimated high-memory watermark per MPI rank. It’s shown here in yellow. This is a reminder that the
fast density approach uses significantly more memory than the slow approach. The value in the printout is the expected
maximum memory that fast density uses per MPI rank. If your printout is truncated before you reached this line, you
most likely already ran out of memory. At this stage, we use an all-or-nothing approach – there is no way to give the
algorithm a memory allowance and tell it that it should not consume more. Work on this is in progress. The best way
to reduce memory load is to use fewer processes per node and more threads. If this is not sufficient, you can reduce the
memory load by using more nodes, but this is not a linear dependence – i.e. you will not reduce the load by a factor
of two if you add twice as many nodes. Note that what is printed out is the amount of memory consumed by the fast
density approach, not by all of ONETEP.

14.2.1 When is fast density used?
Fast density is only used for energy evaluations done from hamiltonian_mod – via
hamiltonian_lhxc_calculate() and hamiltonian_energy_components(). These are the costly density
calculations, because they are done hundreds of times in the course of a calculation. All other density calculations
(done in forces, properties, eigenstates, linear response, lr_tddft, population, dma, dmft, EDA, implicit solvent restarts)
are always done using the exact (slow) method. The rationale is that these are done much less often and possibly
require more accuracy.

If you want to know precisely when the fast and slow routines are called, specify trimmed_boxes_output_detail
PROLIX or higher.
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14.2.2 Accuracy
The default settings should give you sufficient accuracy to converge NGWFs to any reasonable threshold and to get
energies and forces that are negligibly different from those obtained with the slow approach. However, for more difficult
systems, particularly if using low kinetic energy cutoffs (say, below 700 eV – like would probably be used with PAW),
you might need to tighten the parameters to get desired accuracy.

In addition to adjusting trimmed_boxes_threshold as explained earlier, you may want to use
fast_density_off_for_last T (the default is F). This will tell ONETEP to use the slow (but exact) ap-
proach for the final energy evaluation. You will know this happened by examining the output file and looking
for:

! Looks like the last energy evaluation.
! The fast density calculation will now be disabled in the interest of accuracy.

Note that this will not be printed if trimmed_boxes_output_detail is BRIEF or if fast density would have already
been switched off by fast_density_elec_energy_tol (see below). This setting resets any time you start a new
NGWF convergence loop – that means that in auto solvation, geometry optimisation, MD, etc. each optimisation will
start with fast density turned on.

Also note that this switching is done in the NGWF convergence loop. If you are working with fixed NGWFs
(maxit_ngwf_cg 0 (or negative)), this switching will not take place.

Furthermore, particularly if your calculation struggles to converge to the default NGWF threshold, you can set
fast_density_elec_energy_tol. This is the energy change per atom between NGWF steps below which ONETEP
will switch to the slow (but exact) approach. It’s the same quantity that is used as the energy convergence criterion in
elec_energy_tol. The default is 1E-50, effectively turning this off. Setting it to 1E-7 will typically have ONETEP
switch to the slow approach for the last few NGWF iterations. The higher you set this, the sooner ONETEP will switch
to the slow approach. This, of course, eats into your efficiency gain. You will know if and when this happened by
examining the output file and looking for:

! Energy change per atom: 0.30287E-07 Eh < 0.10000E-06.
! The fast density calculation will now be disabled in the interest of accuracy.

Note that this will not be printed if trimmed_boxes_output_detail is BRIEF. This setting resets any time you start
a new NGWF convergence loop – that means that in auto solvation, geometry optimisation, MD, etc. each optimisation
will start with fast density turned on.

Note that you need at least two NGWF iterations to have a meaningful energy change to examine, so this setting has no
effect if you take fewer than two NGWF iterations.

14.2.3 Memory use
Fast density requires more memory than slow density, particularly with fast_density_method 1. Fortunately,
fast_density_method 2 requires substantially less memory. If you are running on GPUs, you might want to control
memory use more tightly, since GPUs typically have much less RAM available.

Keywords that might help you are:
• fast_density_batch_size n – which controls the batch size over FFTs in fast density. The default is

64. We need to keep a coarse-grid FFT-box for each element of the batch, both on the CPU and GPU (if in
use), per MPI rank. This setting is not affected by the number of OpenMP threads. Reducing this value will
decrease memory use both on the CPU and GPU. The lowest you can go is 1. You will likely experience a
performance hit if you go below 16.

• threads_gpu n – which controls the number of OpenMP threads (on each MPI rank) driving GPU op-
erations. We need to keep a complex coarse-grid FFT-box and a complex fine-grid FFT-box both on the
CPU and the GPU (if in use), per each OpenMP thread per each MPI rank. This is for the OpenACC cuFFT
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backend, for the CUDA cuFFT backend the requirement is twice that much. This is a lot of RAM, partic-
ularly for a GPU. Reducing this setting should significantly reduce GPU memory use. The default is the
same as threads_max, and so is the same as what you pass in the -t option to onetep_launcher or set
your OMP_NUM_THREADS to. You will likely experience a performance hit when decreasing it.

• fast_density_fast_ngwfs T/F. For more details, see Fast NGWFs (for users). Setting to F will reduce
memory use, particularly on the GPU. When running on CPU, you should be using F anyway, as there will
likely be no performance gain from using T. On GPUs T should be faster. The default is T when running
on a GPU, and F otherwise.

14.2.4 Remaining options
The default output detail of fast density is the same as specified for output_detail. You can set it separately by
specifying trimmed_boxes_output_detail. The available options are the same as for all ONETEP output details:
BRIEF, NORMAL, VERBOSE, PROLIX and MAXIMUM.

14.2.5 Example settings
For a quick-and-dirty calculation (might not converge to default thresholds) use:

• fast_density T

• trimmed_boxes_threshold 2E-5.

For a typical calculation just use:
• fast_density T (which will use the default of trimmed_boxes_threshold -1.0 for optimised NG-

WFs, or 1E-6 for fixed NGWFs).

For an accurate, but slower calculation use:
• fast_density T

• trimmed_boxes_threshold 7E-7

• fast_density_off_for_last T

• fast_density_elec_energy_tol 1E-7.

For very safe settings that should provide a modest gain in efficiency, try:
• fast_density T

• trimmed_boxes_threshold 4E-7

• fast_density_off_for_last T

• fast_density_elec_energy_tol 3E-7.

If you keep running out of memory, ensure you are not using``fast_density_method 1``. Try fast_density_method
2 instead. Read Memory use.

If you are running ONETEP on GPUs, most definitely use fast_density_method 2.

14.2.6 Compatibility
Fast density is known to work (to the best of our knowledge) with the following additional functionalities:

• extended NGWFs,

• PBCs and OBCs,

• implicit solvation,

• hybrid functionals and Hartree-Fock exchange,
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• fine_grid_scale larger than 2.0,

• PAW,

• DFT+U,

• conduction,

• MD,

• geometry optimisation,

• TS search,

• NEB,

• EDFT and LNV.

Fast density is known not to work (this we know with certainty) with the following additional functionalities:
• complex NGWFs (and, thus, k-points),

• spin-polarised NGWFs (but spin-polarised density kernel is compatible),

• TD-DFT (mixed bases are not supported at this point).

• EMFT (regions).

ONETEP will stop with an error if either of these is used with fast_density T.

14.3 Fast local potential integrals (for users)
This is a user-level explanation – for developer-oriented material, see Fast local potential integrals (for developers).

The calculation of local potential integrals is another time-consuming part of ONETEP. In a typical calculation it has
to be performed hundreds of times. There are two ways in which ONETEP can calculate the local potential integrals –
conveniently termed “slow” and “fast”.

The slow approach is the only approach available until ONETEP 7.1.49. Starting with ONETEP 7.1.50, a fast approach
is also available, but it is not the default. This means that action is required on your part to use the fast approach. The
fast approach is up to several times faster (for this part of the calculation), but that depends heavily on the system. It
does require more memory.

The fast approach for local potential integrals uses similar techniques as Fast density calculation (for users), that is
trimming of data in double-grid FFT-boxes, which is a well-controllable approximation, but an approximation never-
theless. It would be prudent to read the section on Fast density calculation (for users), and the part about controlling
accuracy in particular. The same mechanism is used here (trimmed_boxes_threshold).

The fast approach works best for “serious” systems, it’s not meant to address scenarios with KE cutoffs below
700-800 eV or NGWFs smaller than 8.0 a0. It will also not perform well when your FFT-box is small (say, below
80 x 80 x 80 points), as happens e.g. for very small periodic supercells. In this case it can actually be slower.
To switch between the approaches use:

• fast_locpot_int T – for the fast approach,

• fast_locpot_int F – for the slow approach.

In contrast to fast density, there is only one fast locpot int approach implemented, so there is no need to choose a
method, just turning it on is sufficient. The fast locpot int approach works best when fast_density T is in use (regardless
of fast_density_method), as they share some of the workload and memory requirement. You can expect good synergy
when using both approaches at the same time.
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There is only one additional settings for fast local potential integrals at this point (apart from
trimmed_boxes_threshold), and almost always simply turning it on is sufficient. For pointers about about
settings, see the suggested settings in Fast density calculation (for users), just add fast_locpot_int T to any of them.

The additional setting is:
• fast_locpot_int_fast_ngwfs T/F – which turns fast NGWFs on or off in the calculation of local

potential integrals. On a CPU these are expected to offer a marginal boost in performance. On a GPU the
gain should be more significant. The default is T when running on a GPU, and F otherwise.

A GPU port of fast local potential integrals is in place (starting from ONETEP 7.1.50). It is activated automatically if
you run a GPU-capable binary.

14.4 Fast NGWFs (for users)
This is a user-level explanation – for developer-oriented material, see Fast NGWFs (for developers).

This is an experimental feature at this point (February 2025). The PPD representation of NGWFs in ONETEP can be
replaced by a faster representation known as the rod representation. This can be done with:

• fast_density_fast_ngwfs T – in the fast density calculation,

• fast_locpot_int_fast_ngwfs T – the fact local potential integral calculation,

or with:

• fast_ngwfs T – which over-rides both of the above to T.

The default is fast_density_fast_ngwfs F and fast_locpot_int_fast_ngwfs F when running on a CPU, and
fast_density_fast_ngwfs T and fast_locpot_int_fast_ngwfs T when running on a GPU.

On a CPU the performance gain will likely be marginal or non-existent. On a GPU you should see a modest improve-
ment. The memory cost of fast_locpot_int_fast_ngwfs T should be negligible on both CPU and GPU. The
memory cost of fast_density_fast_ngwfs T is significant, particularly on a GPU.
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15.1 Advice for Contributors

15.1.1 Pre-pull-request checks
The ONETEP source code is distributed with a number of useful scripts for checking some aspects of the correctness
of source code. Before creating a pull request, you should ensure that these tests all pass for the branch you want to
merge in your private fork:

1. Check module dependencies and a few other common issues. Run

make checkdeps

or, equivalently,

./utils/check_dependencies

in the root directory of the repository. If any errors are found, fix them.

2. Check whitespace. Run

./utils/check_whitespace

in the root directory of the repository. This script can automatically fix whitespace issues – see the output of
./utils/check_whitespace -h for details.

3. Check use clauses. Run

./utils/check_use_clauses src/yourmodule_mod.F90

in the root directory of the repository, replacing yourmodule with the module you worked on. If there was more
than one, do this for every module separately. This script checks for unnecessary use clauses and will help point
them out. You are only responsible for the use clauses in the code you touched.

4. You must also run the full QC test suite before creating a pull request. Instructions for that can be found here:
Compiling, testing and running ONETEP.
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Key points about running the QC test suite before creating a pull request:
• Never run the QC tests in the actual repository. Create a copy of your ONETEP installation directory (e.g.
cp -a onetep_jd onetep_jd_qc) and run the tests in the directory of the copy. Much of the stuff in the
install is not needed to run the tests (e.g. all of src/), but it’s just less hassle to copy the entire thing than
pick out the necessary subdirectories.

Why not run the QC tests in the actual repository? Because they produce outputs, which can become
messy to clean up back to pristine state, polluting your repository with spurious changes. This becomes
more problematic because symbolic links are used in the QC test suite. Trying to update your repository
via git pull or git fetch may be tricky when you have unfinished or improperly cleaned up QC tests.
Just don’t run them straight in the repository.

• You should run the test suite with ONETEP compiled with a recent version of a widely used Fortran com-
piler, e.g. GNU Fortran, Intel Fortran Classic, Cray Fortran.

• The tests should be run in a parallel environment (ONETEP must be compiled with MPI support), ideally
also making use of OpenMP threading (set the environment variable OMP_NUM_THREADS to a value >1, or
use the -t argument to onetep_launcher).

• No tests should fail, though warnings are acceptable.

If tests fail, please investigate this further before creating your pull request:
• If you updated your local copy (git merge or git pull) rather than cloning it from scratch (git clone),

did you remember to make cleanall before compiling?

• Check out the master branch from the official repository (ensuring that it is fully updated by fetching from
it and merging) and run the failing tests on this.

• If the relevant tests do not fail upstream (i.e. for the master branch on the official repository), you should
fix the code in your fork before creating your pull request.

• If the relevant tests also fail upstream, please check the list of issues in the official repository ( https:
//github.com/onetep-devel/onetep/issues ): there should be an open issue with relevant information. If
such an issue has not been reported, please create a new issue explaining which tests are failing and any
details about how the failures occur. If the above link gives you a 404, you are not logged into GitHub.

If the tests are not failing upstream, the problem is likely to be part of the changes you have implemented and you will
be the best person to find it and fix it. If you need help, and want to discuss the issue with other developers, you may
create an issue in your fork (not in the official repository) and draw their attention to it via email or on the ONETEP
development Slack at https://onetep-devel.slack.com/.

If your tests fail in a way in which the official master branch is known to fail, your pull request may be acceptable – you
can go ahead creating the pull request, but make sure that the text of the pull request includes a list of the tests that fail
and why you think that this is not a problem.

Ensure that the ONETEP version number in your src/onetep.F90 file is updated appropriately (see Version number-
ing for a description of ONETEP’s version numbering system). If multiple pull requests are open, or it takes time to
merge your pull request, it may be necessary to update the version number again during the pull request code review.
This is to ensure that the version number increments linearly in the official repository’s master branch.

Read the next subsection on style conventions to ensure your code adheres to them.
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15.1.2 Style conventions
In order to keep the ONETEP codebase relatively consistent and readable, we have adopted the following conventions:

• Each line of code should be 80 columns or fewer in length, as this makes comparison of two versions of code
side-by-side easier (some older code does not adhere to this, but all new code should).

• If a line exceeds 80 columns in length, use continuation characters (&) to break it into chunks of <=80 characters
(remember to include an extra & at the beginning of the following line when breaking in the middle of a string
literal). Do not add & in the next line otherwise, it’s unnecessary.

• Always use spaces for indentation, never tabs.

• The blocks in the do loop, select case (also select type) and if constructs should be indented by 3 spaces.
• The contents of subroutines and functions should be indented by 2 spaces. Use further 2 spaces for internals.

• Line continuations should be indented by 5 spaces for continued lines.

• Ensure there is no trailing whitespace before you commit (you can use the ./utils/check_whitespace script
described in Pre-pull-request checks to check this).

• In general, adding or removing blank lines should be avoided in core modules, as these changes will appear in
the commit history.

15.1.3 New functionality
If you add new procedures or significantly change existing procedures, you must create or update the documentation
in the source code. Examples of how to document procedures can be found in the template module template_mod.
F90 in the documentation repository. The key components of the documentation of procedures are:

• A human-readable description of the new functionality.

• A list of the arguments and a description of their meaning.

• The author(s) and a changelog describing significant modifications.

When adding new functionality which does not fit into other modules, it may be necessary to create a new source file
containing a new module. Note that procedures and variables should always be encapsulated in modules, not ‘bare’ in
a source file.

Before creating a new module, you should consider carefully whether your new functionality fits within the framework
of an existing module, or is generic enough to be part of a multi-purpose module, such as utils or services. If a new
module is needed to encapsulate some new functionality, then you should follow the following guidelines:

• Give your module a name which indicates the functionality it contains. If unsure, consult a more experienced
developer to discuss an appropriate name.

• The filename for the module should have the form <module_name>_mod.F90, where <module_name> is the
name you have given the module.

• By default, variables and procedures in your module should be private (i.e. they should have the private
attribute).

• Global module-wide variables (private or public variables declared at the level of the module itself rather than
within its routines) constitute “hidden state”, which tends to make the behaviour of a routine undesirably depen-
dent on more than just the arguments it is called with. Sometimes these are unavoidable, and there are instances
of them in the code. However, they should be minimised as much as possible. Think carefully before declaring
any module-level global variables. More experienced developers may be able to suggest ways to encapsulate
data inside arguments to routines such that they do not constitute “hidden state”.

• Variables and procedures which do have to be public (accessible outside the module) should be explicitly specified
(i.e. they should have the public a ttribute).
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• In general, public variable and procedure names should be prepended by a standard prefix (typically the module
name, or a shortened version of the name).

It is recommended that you make a copy of ./doc/template_mod.F90 and use this as a starting point for your new
module, as this will make following the above guidelines easier.

15.1.4 Version numbering
There are three parts to the version number, both for development versions and release versions. The first version
number is only very rarely incremented by a collective decision of the main authors of the code (ODG). New major
versions are released around every 6-12 months and are indicated by incrementing the second number in the full version
number (e.g. “2” in “4.2”).

The major version number (second number in full version number) indicates whether the associated source code is a
release version or a development version:

• Release versions (which are distributed to users) have an even second number.

• Development versions (which are under active development) have an odd second number.

Within a series with the same second version number, successive versions (indicated by the third number in the full
version number) should be compilable and complete with respect to a given new feature.

For minor changes in development versions (e.g. a bugfix or minor change to existing code), we no longer increment
the fourth number (which is now absent altogether) to avoid merge conflicts when this is done by multiple people.
The script utils/embed_version_info_in_banner ensures that pertinent details of the local repository (branch,
remote, last commit ID, list of locally modified files) are included in the ONETEP banner during compilation, but they
do not go into the repository. Major changes (e.g. a new module or overhaul of existing functionality) should increment
the third number.

Bugfixes to a release version (merged into the corresponding release branch on the official repository, e.g. aca-
demic_release_v5.0) should increment the last (third) number in the full release version number.

At any given time, there is a development version and a release version differing in their second version number
by 1.

• 4.0.0 <– first release of v4

• 4.0.1 <– bugfix to v4 in git branch for release

• 4.1.0 <– first development version of v4 (initially same as 4.0.0)

• 4.1.0 <– minor development work (changes will be summarised in banner)

• 4.1.1 <– significant development work

• 4.2 RC3 <– release candidate 3 for v4.2

• 4.2.0 <– next release version

• 4.3.0 <– next development version (initially same as 4.2.0).

• 5.0.0 <– first release of v5

15.2 Preventing accidental pushes to the official repository
• GitHub users in the Owner role of the ONETEP repository have write access to the official repository.

• Owners may want to take steps to avoid accidentally pushing work to the official repository if they have added
this as a remote to their private fork.

• This can be achieved by setting the push address for the remote to an unresolvable URL, e.g.:
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git remote set-url --push github_official DISABLE

15.3 Continuous integration
Author

Jacek Dziedzic, University of Southampton

Author
Alin-Marin Elena, Science and Technology Facilities Council

Author
Chris-Kriton Skylaris, University of Southampton

Since early 2024 ONETEP enjoys modern continuous integration using GitHub Actions and workflows, which replaces
the earlier effort using buildbot, which has been discontinued.

15.3.1 GitHub Actions and workflows
GitHub Actions is a platform for adding and controlling workflows. There is a tutorial at https://docs.github.com/en/
actions/writing-workflows/quickstart if you would like to learn more.

ð To access GitHub Actions

• Go to the repository GitHub page.

If you get a 404 Not Found, make sure you’re logged in to GitHub first, with necessary credentials (Owner).

• At the top middle, click on Actions (play symbol).

• If you don’t see the Actions button at all, Actions have been disabled for that repository. You can re-enable
them via Settings (cogwheel), then Actions in the pane on the left, then General, check Enable all
actions and reusable workflows at the top.

A workflow is an automated process – a set of commands to be executed on some triggers (like a push, pull request,
schedule, clicking a button in the Actions GUI, etc). Example workflows would be: build ONETEP, deploy documen-
tation, run QC tests.

A workflow run is an instance of a particular workflow, e.g. “build ONETEP #42, ran on 2024-07-07”.

ð To see a list of ONETEP workflows and workflow runs

• Access GitHub Actions (see above).

• Workflows will be listed as All workflows in the pane on the left.

• Workflow runs will be listed on the right.

Currently, we have the following workflows for the main (code) repository:
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Name Hosting Purpose Runs in OS
Build on Docker
for ubuntu:noble

GitHub (GH) Build Docker on ubuntu-latest ubuntu-noble

Build in VM
on uos-23486

Self-hosted
(SH)

Build VM on RHEL 8.9
in Soton

ubuntu-server
24.04 LTS

Build
on uos-23486

Self-hosted
(SH)

Build Physical machine
in Soton

RHEL 8.9

Check
on uos-23486

Self-hosted
(SH)

Run checks Physical machine
in Soton

RHEL 8.9

QC-test
on uos-23486

Self-hosted
(SH)

Run QC
tests

Physical machine
in Soton

RHEL 8.9

Here they are in more detail

• GH: Build on Docker for ubuntu:noble – builds ONETEP using make and config files in
an Ubuntu Noble Docker container running on GitHub’s ubuntu_latest. Only one plat-
form is built: gfortran+OMP+openmpi+ScaLAPACK. It is defined in .github/workflows/
github_hosted_build_on_docker_ubuntu_noble.yml. The Docker image is defined in ci/
docker_images/ubuntu/noble/Dockerfile. It is run on every push and every pull request.

• SH: Build in VM (on uos-23486) – builds ONETEP using make and config files in an Ubuntu virtual ma-
chine set up by Jacek, described in Virtual machine as a self-hosted runner. An extensive list of platforms
is built, they are listed in Virtual machine as a self-hosted runner. It is defined in .github/workflows/
self_hosted_build_on_soton_runner_vm_jaceks_box.yml. It is run on every push and every pull re-
quest.

• SH: Build on uos-23486 – builds ONETEP using make and config files on a RHEL 8.9 physical machine
in Soton. Only one platform is built: ifort+OMP+Intel MPI+ScaLAPACK+MKL. It is defined in .github/
workflows/self_hosted_build_on_soton_runner_jaceks_box.yml. It is run on every push and every
pull request.

• SH: Check on uos-23486 – runs ONETEP checks (check_whitespace, check_dependencies_extensive)
on a RHEL 8.9 physical machine in Soton. It is defined in .github/workflows/
self_hosted_check_on_soton_runner_jaceks_box.yml. It is run on every push and every pull
request, and at 4am every day.

• SH: QC-test on uos-23486 – runs ONETEP QC tests on a RHEL 8.9 physical machine in Soton. Only
one platform is tested: ifort+OMP+Intel MPI+ScaLAPACK+MKL. It is defined in .github/workflows/
self_hosted_QC_on_soton_runner_jaceks_box.yml. It is run on every push and every pull request, and
at 1am every day.

For the public tutorials repository we only have:

• tutorials, set up by Alin, which builds the tutorials with sphinx and deploys them, via GitHub pages, to tutori-
als.onetep.org. It is defined in the tutorials repository in .github/workflows/tutorials.yml.

For the public documentation repository we only have:

• onetep docs, set up by Alin, which builds the documentation with sphinx and deploys the to GitHub pages. It
is defined in the documentation repository in .github/workflows/doc.yml.

There are no workflows (none deemed needed) for the public repository onetep-devel.
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15.3.2 Adding and editing workflows
A workflow can be added by adding a YAML file that describes the commands and triggers to .github/workflows
in the repository and committing changes. Alternatively, it can be added from the GUI by clicking New workflow in
the pane on the left.

Workflows can be edited simply by editing these YAML files – either in the repository and then committing changes,
or from the GUI. To do this from the GUI, find the workflow, click its name in the pane on the left, and then its .yml
filename at the top. Next click the pencil icon on the right. Make necessary changes, and click the green Commit
changes button.

The workflows under .github/workflows are extensively commented, so it should be easy to create a new one by
starting from something that is already there. Try following the naming convention in the name: field of the .yml file:
hosting-purpose-where.

• For hosting, use GH for GitHub-hosted or SH for self-hosted.

• For purpose, use Build, Check or QC-test.

• Use where, to describe if it’s a Docker container, VM or a physical machine (with location).

, Warning

If you add a workflow through your own fork, it will also be featured in your fork, in addition to the main repository.
If it is using a self-hosted runner, you probably do not want it to be run from the fork – self-hosted runners are not
inherited from the parent repository, and your fork probably does not have any self-hosted runners to run your
workflow on. This will result in failures after 24h as the workflows will be unable to run.

To work around this you can either:

• Disable Actions in your fork via Settings-Actions-General-Disable actions. This is the sledge-
hammer approach.

• Disable every new workflow in your fork via Actions, clicking on workflow, clickin on ... in the top right,
Disable workflow. The workflows will show as Disabled in your fork. This is the hammer approach.

• Add if: github.repository == 'onetep-devel/onetep before runs-on: in your workflow
YAML file. This means you will have a copy of the workflow in your fork, but it will be skipped. This
is probably the rational approach, and we do this for all ONETEP workflows.

When forking the main repository, workflows are not transferred to the fork, so this only matters when adding new
workflows via a fork.

ð To quickly test a workflow

• Add workflow_dispatch: to its list of triggers (like ONETEP does for all workflows). This adds a Run
workflow button above the list of workflow runs. This button lets you run a workflow manually. Very useful!

15.3.3 GitHub-hosted runners
Runners are machines that execute jobs in a Github Actions workflow.

They can be GitHub-hosted (described here), or self-hosted (described under Self-hosted runners).

GitHub-hosted runners are virtual machines with tools preinstalled, set up in the GitHub cloud. To use a GitHub-hosted
runner, specify “runs-on” in the workflow YAML file, e.g. runs-on: ubuntu-latest.

For a quick description and list of available GitHub-hosted runners see About GitHub-hosted runners. This webpage
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also lists software installed on each runner, and the VM’s hardware specs. The specs are different for public repositories
(better specs, unlimited minutes) and private repositories (worse specs, pool of free minutes, then charged via billing).

For instance ubuntu-latest currently uses ubuntu-22.04 LTS, with the following specs:

• 4 CPUs, 16 GB of RAM and 14 GB of SSD (for public repositories),

• 2 CPUs, 7 GB of RAM, 14 GB of SSD (for private repositories).

On Linux GitHub-hosted runners passwordless sudo is in effect.

We use GitHub-hosted runners for the following lightweight workflows:
• GH: Build on Docker for ubuntu:noble,

• tutorials,
• onetep docs.

For more involved workflows, we use Self-hosted runners.

15.3.4 Self-hosted runners

ð Self-hosted runners

Self-hosted runners are machines under our control that execute jobs defined by Github Actions. They can be
physical machines, virtual machines (VMs), containers, or can live in the cloud.

A self-hosted runner machine connects to GitHub using the GitHub Actions self-hosted runner application. The GitHub
Actions runner application is open source. Instructions for downloading the application are shown when a new self-
hosted runner is added from the GitHub web GUI. The application auto-updates.

, Warning

A self-hosted runner is automatically removed from GitHub if it has not connected to GitHub Actions for more than
14 days.

Self-hosted runners should only be used for private repositories, otherwise they could be used to run untrusted code.
The ONETEP repository is private.

Requirements for self-hosted runners can be found at Requirements for self-hosted runner machines. In short:

• Must be able to run the self-hosted runner application. Example supported linuces:

– RHEL 8 or newer

– Debian 10 or newer

– Ubuntu 20.04 or newer

• Needs to be able to communicate with Github Actions.

– The self-hosted runner connects to GitHub to receive job assignments and to download new versions of the
runner application. They talk over HTTPS port 443.

– There is no need to allow inbound connections from GitHub to the self-hosted runner, only a connection
to github.com is needed.

• Sufficient hardware to run our jobs.

• If Docker container actions needed, Docker must be installed.
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To add a self-hosted runner, you must be the repository owner. Follow Instructions for adding a self-hosted runner
– they describe the steps for obtaining, installing, configuring and running the GitHub Actions application that must
be present on the self-hosted runner. These are also mentioned in steps C and D in Preparing an Ubuntu VM for a
self-hosted github runner from scratch. Take a look at that too.

In the YAML file, make sure you have runs-on: [self-hosted, your-runner-label], where you need to
replace your-runner-label with the label you gave it when configuring the GitHub Actions application.

ð To see a list of our self-hosted runners

• Go to the repository GitHub page. If you get a 404 Not Found, make sure you’re logged in to GitHub first,
with necessary credentials (Owner).

• At the top right, click on Settings (cogwheel).

• In the left pane, under Actions, choose Runners.

A self-hosted runner can execute workflows:
• directly (“on the bare metal”),

• using a VM (Virtual machine as a self-hosted runner),

• using Docker containers (Docker containers as runners).

15.3.5 Virtual machine as a self-hosted runner
Using a virtual machine as a self-hosted runner has the advantage of easy portability. Once the VM is set up, it can be
transferred to any physical machine that has VirtualBox installed. ONETEP’s first VM is a Ubuntu server 24.04 LTS
install, with the following compilers:

• Intel Fortran Classic 2021.13.0 20240602 (possibly the last version in this line of compilers),

• Intel Fortran (ifx) 2024.2.0 20240602,

• GNU Fortran v13.2.0,

• nvfortran 24.7-0,

and the following MPI versions:

• openmpi 4.1.6 (installed system-wide),

• openmpi 4.1.7a1 (bundled with nvfortran),

• mpich 4.2.0 (installed system-wide),

• Intel MPI 2021.13 Build 20240515 (bundled with Intel oneAPI).

ScaLAPACK, OpenMP, CUDA, FFTW3 and MKL are also installed.

There are config files for the following combinations to be found under ./config/conf.runner_vbox.*:

• gfortran.no_omp.no_mpi,

• gfortran.omp.mpich.scalapack,

• gfortran.omp.openmpi.scalapack,

• ifort.omp.intelmpi.scalapack.mkl,

• ifx.omp.intelmpi.scalapack.mkl,

• nvfortran.omp.openmpi.acc,
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• nvfortran.omp.openmpi.cuda.

The Github Action SH: Build in VM (on uos-23486) currently only builds these seven options. This happens on every
push and every pull request.

An 8.7GB compressed file of the VM is stored on the ODG google drive, for lack of better hosting options. If you have
a spare machine with VirtualBox, I encourage you to simply download it and add it to your VirtualBox. Once run, it
will automatically listen to GitHub and execute Actions.

Here are instructions for setting this up:

1. Install VirtualBox on your machine.

2. Ask Jacek for a link to download the VM. We are not publicly sharing the link, because the GitHub token could
be (with difficulty) salvaged from the VM disk file. Anyone with the VM would technically be able to clone the
ONETEP repository.

3. The VM does not have the GitHub Actions application installed. This is because the installation and configuration
needs to be done separately on every instance of the runner. At least one instance is already running somewhere
in Southampton, you do not want to confuse GitHub with another one that would be using the same token. So,

• Log into the VM, use the username onetep and the password onetep.

• Complete only steps C and D in Preparing an Ubuntu VM for a self-hosted github runner from scratch.
This involves setting up a new runner in GitHub Actions, and building a new $HOME/actions-runner. It
is a simple process.

4. That’s it, you’re done. Every time you will boot up the VM, it will listen for connections from GitHub Actions.

Starting and stopping the VM remotely

The box on which you will be running the VM will occasionally have to be shut down, or rebooted. If you’re not
physically there to start the VM anew from the GUI, and don’t have the patience of a saint to start it via ssh + X11,
here’s how to start and stop the VM remotely.

First, find out the name of the VM:

VBoxManage list vms

On my machine this lists just one VM:

"self-hosted-runner-ubuntu" {91d15f0a-000d-44fc-91c6-68452ca6bd2b}

The name of the VM is the bit in double quotes. To start the VM (assuming it has the same name as here):

VBoxManage startvm "self-hosted-runner-ubuntu" --type headless
disown -ah

This starts the VM in the background. If you run top, you will notice a process with the name VBoxHeadless running.
The additional disown -ah is to make sure that the newly started process doesn’t die when you log off. An alternative
is to use nohup or screen to ensure the same thing.

, Warning

My tests, and internet lore, indicate that it is absolutely crucial that you log in to the physical machine without X11
forwarding. Otherwise, the shell will pause at logout when you exit, and pressing ctrl-C to finish the logging
out will terminate your VBoxHeadless process, regardless of the use of disown -ah, nohup or screen. IOW,
the machine dies on logout when you use X11. No idea why that is, as we are not using X11 in headless mode.
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If you need to shut down the VM from remote, issue:

VBoxManage controlvm "self-hosted-runner-ubuntu" poweroff

This is equivalent to pulling the cable on the VM. If you’d like to be more graceful, you can do:

VBoxManage controlvm "self-hosted-runner-ubuntu" acpipowerbutton

This will emulate pressing the ACPI power button, which, with a bit of luck, should lead to a graceful shutdown. Note
that:

VBoxManage controlvm "self-hosted-runner-ubuntu" shutdown

does not work without Guest Additions installed, and these would normally be absent on the VM.

Finally, to list running VMs, you can issue:

VBoxManage list runningvms

15.3.6 Preparing an Ubuntu VM for a self-hosted github runner from scratch
It would be best not to reinvent the wheel and use the one Jacek prepared in 2024.08. It uses ubuntu-server 24.04 LTS.

In case anyone needs to create a new one at some point in the future, here goes:

1. Create a new VM in VirtualBox.

• Give it 4 or 8 CPU cores and plenty of RAM. I chose 12000 MB.

• Under System/Processor make sure to select Enable PAE/NX and Enable Nested VT-x/AMD-V.

• Do not touch the Execution Cap.

• Under Acceleration, choose Default for the Paravirtualization Interface, and select Enable
Nested Paging.

• Under Storage, add a SATA Controller and to it a newly created VDI with a 40-50 GB of space, use
dynamically allocated storage.

• Under Storage, to the same SATA Controller add an optical drive and attach the bootable ubuntu ISO to
it. I used Xubuntu-minimal 24.04 LTS, a server version would probably be a better idea, because we do not
want X11 or Wayland on this VM.

• Under Network, make sure Enable Network Adapter is selected. I chose Intel PRO/1000 MT
Desktop for the adapter. It’s better than the default at reattaching correctly after a network connectivity
interruption on the host.

• The remaining settings are irrelevant.

2. Boot the VM from the optical drive, install ubuntu to the newly created VDI. Create a single user, e.g. onetep
with a password of your choice, e.g. onetep. Anyone with access to the VM will be able to fetch the repository,
but that’s about it, security-wise. The VM will not have SSH access. Turn off the VM.

3. Detach the ISO from the optical drive. Boot into the freshly installed system. Log in as the user you created.

4. Do not install VirtualBox guest additions, as they do not respond well to changes in the version number of
the Oracle VirtualBox installation itself, and you want the VM to be portable between different versions of
VirtualBox. That means, unfortunately, there will be no bidirectional clipboard between the VM and the host
OS. If there is a lot of typing, create a shared folder to paste things into on the host and copy them over from
there on the guest.

5. sudo apt install the following packages:
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curl
docker.io
expect
gfortran
git
make
mc
libfftw3-bin
libfftw3-dev
libfftw3-doc
libmpich-dev
libopenmpi-dev
libopenblas-dev
libscalapack-mpich-dev
libscalapack-openmpi-dev
openmpi-bin
openmpi-common
openmpi-doc
plocate

6. Download Intel oneAPI Base Toolkit, I used 2024.2.0. It is a prerequisite for Intel HPC Toolkit, which you will
need too, because it includes the Fortran compiler.

• Choose the Linux version.

• Don’t give out your email or name, don’t agree to marketing communication. Instead, click continue as
guest.

7. Once you have the installer, run it using sudo. Go through Accept and customize to be able to select pack-
ages. Select ONLY MKL, or else you will install a lot of unnecessary stuff. If prompted, skip Eclipse IDE
configuration.

8. Download Intel HPC Toolkit Online Installer. This includes the Fortran compilers and Intel MPI.

• Choose the Linux version.

• Don’t give out your email or name, don’t agree to marketing communication. Instead, click continue as
guest.

9. Once you have the installer, run it using sudo. Go through Accept and customize to be able to select pack-
ages. If prompted, skip Eclipse IDE configuration.

• Deselect everyting with “C++” or “DPC++” in the name, or else you will install a lot of unnecessary stuff.

• You will now have a working Intel oneAPI install in /opt/intel.

A. Get nvhpc via apt by following the instructions from NVIDIA.

• At the time of writing of this document, these were:

curl https://developer.download.nvidia.com/hpc-sdk/ubuntu/DEB-GPG-KEY-NVIDIA-
→˓HPC-SDK | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-hpcsdk-archive-
→˓keyring.gpg
echo 'deb [signed-by=/usr/share/keyrings/nvidia-hpcsdk-archive-keyring.gpg]␣
→˓https://developer.download.nvidia.com/hpc-sdk/ubuntu/amd64 /' | sudo tee /etc/
→˓apt/sources.list.d/nvhpc.list
sudo apt-get update -y
sudo apt-get install -y nvhpc-24-7
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• Once this is done, you’ll have nvhpc in /opt/nvidia.

B. Perform Docker post-installation set-up by issuing these two commands:

sudo groupadd docker
sudo usermod -aG docker $USER

This is necessary to be able to run docker without sudo. This is how GitHub Actions run docker, so will be
necessary if you plan to use docker on the VM. You can skip this step if you plan to run directly on the VM.

C. Install the GitHub runner app, as described at https://docs.github.com/en/actions/hosting-your-own-runners/
managing-self-hosted-runners/adding-self-hosted-runners which will likely get you to https://github.com/
onetep-devel/onetep/settings/actions/runners/new. If you get a 404 instead, you are not logged into your (correct)
GitHub account.

• This needs to be done by a repository owner because the instructions that will be generated will contain a
token that lets the runner clone the repository without you having to share your PAT credentials.

• At the time of writing of this document, the instructions looked like this:

# Create a folder
mkdir actions-runner && cd actions-runner

# Download the latest runner package
curl -o actions-runner-linux-x64-2.317.0.tar.gz -L https://github.com/actions/
→˓runner/releases/download/v2.317.0/actions-runner-linux-x64-2.317.0.tar.gz

# Extract the installer
tar xzf ./actions-runner-linux-x64-2.317.0.tar.gz

# Create the runner and start the configuration experience
./config.sh --url https://github.com/onetep-devel/onetep --token [___REDACTED___
→˓]

. . . but they can change (e.g. the name and address of the the .tar.gz file gets updated).

• During the configuration stage you will be asked a few questions. Here are the recommended answers:

– For name of group, press Enter to use the default.

– For name of runner, pick something clear, e.g. I chose onetep-vm-on-jaceks-box.

– For label, also pick something clear, e.g. I chose soton-runner-vm-jaceks-box. The label is referenced
later in the .yml file in the runs-on: section – you want your workflow to run not on all self-hosted
runners, but on this specific runner.

– For name of work folder, press Enter to use the defailt.

D. Set up the github application to run automatically as a service so that you won’t even have to log in to the VM
(just boot it up) to have a runner. This can be done with:

cd $HOME/actions-runner
sudo ./svc.sh install
reboot

For environments where you do not have sudo (e.g. for running on bare metal rather than a VM), you will instead
have to:
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cd $HOME/actions-runner
./run.sh >stdout 2>stderr &
disown -ah

every time you boot the machine.

, Warning

Make sure you do not sudo ./run.sh. This will start the runner as root, which is insecure and mpirun may
refuse to run as root. If this happens, to recover you will have to nuke the _work directory because it will now be
owned by root, preventing future, correctly-started instances from writing to it or removing it.

E. If you used a non-server ISO, best to get rid of booting to X11. You can skip this step if you picked a server ISO
in step 1. As root or a sudoer edit /etc/default/grub to include:

GRUB_CMDLINE_LINUX_DEFAULT="text"
GRUB_TERMINAL=console

• This may require adjusting lines that are already there, uncommenting lines that are already there, or adding
new lines.

• Subsequently, issue:

sudo update-grub
sudo systemctl enable multi-user.target --force
sudo systemctl set-default multi-user.target

• This produced some warnings for me and didn’t work the first time around. However, after I did:

sudo reboot
sudo systemctl set-default multi-user.target

it worked. Maybe it’s just a matter of not doing --force, or maybe a reboot was required.

F. Set up the github application to run automatically as a service so that you won’t even have to log in to the VM
(just boot it up) to have a runner. This can be done with:

cd $HOME/actions-runner
sudo ./svc.sh install
reboot

G. [Optional] To make the .vdi file that represents the HDD storage of the VM compressible better, we can take
an additional step. When files are deleted in the VM, the space they used to occupy is not zeroed. That makes
the .vdi file compress poorly. We will now zero all unused space. First, in the VM:

sudo dd if=/dev/zero of=/var/tmp/bigemptyfile bs=4096k
sudo rm /var/tmp/bigemptyfile

Then shut down the VM. Subsequently on the host:

VBoxManage.exe modifymedium --compact path_to_vdi

This compacts the image, making use of the zeroed blocks.

You might need to add a path to your VirtualBox installation before VBoxManage.exe. Of course, replace
path_to_vdi with the path and name of the .vdi file you’re compacting.
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Your .vdi file will now compress better.

H. Write down the username and the password in a secure place.

15.3.7 Docker containers as runners
A Docker container is a way to run in an isolated environment to ensure reproducible builds. It is more light-weight
than a virtual machine (VM). One crucial difference between a Docker container and a VM is that the Docker container
does not retain state. Every time it is instantiated, it starts fresh. Thus, when using Docker containers, we do not have
to worry about any potential cleanup.

A Docker image is a template for an image. You can think of a Docker container as a running instance of a Docker
image.

For more about Docker and Docker containers, see docker for beginners.

In the context of GitHub Action workflows, Docker containers can be used both for running on GitHub-hosted runners
and of self-hosted runners. GitHub-hosted runners already have Docker installed. For using Docker on self-hosted
runners, whether directly or in a VM, Docker must be installed and a small post-install step needs to be performed.

15.3.8 Installing Docker
The method for installing Docker will differ depending on the OS. On Ubuntu it should be as simple as:

sudo apt install docker.io docker-buildx

On Red Hat:

sudo yum install docker

installs podman, which is an alternative to Docker, with a docker emulation mode.

Once you install Docker, it typically requires sudo to run. This is not only cumbersome, but also won’t work with
GitHub Actions, which do not apply sudo to Docker commands. To help with this, on Ubuntu, issue the following
commands:

sudo groupadd docker
sudo usermod -aG docker $USER

. . . and reboot. This only needs to be done once, after Docker is installed.

Podman, it seems, requires a more complicated post-install step, described at https://github.com/containers/podman/
blob/main/docs/tutorials/rootless_tutorial.md. For me, the following steps worked:

sudo yum install slirp4netns
usermod --add-subuids 100000-165535 --add-subgids 100000-165535 $USER

. . . and rebooting.

To test your Docker installation, you can issue:

docker images

This should finish without any error messages and offer you an empty list of images, because you haven’t created any.

To further test your Docker installation (to see if it can access the Web and write local files), you can issue:

docker pull hello-world
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This too should finish without any error messages.

A Dockerfile is a set of instructions, or a recipe, for building a Docker image. We have several of these, they reside
in ./ci/docker_images. They typically start from a ready-made image provided by the docker.io repository, and
then add any prerequisites needed for compiling or testing ONETEP.

To pull an image from the docker.io repository, issue something like:

docker pull ubuntu:noble

This will get the latest image of Ubuntu Noble. ubuntu is the repository, while noble is the tag. If you do not
have that image on your machine, it will be pulled in its entirety (~80 MB, it’s very basic). If you pulled it before, only
the differences will have to be pulled. In any case, you will wind up with a full image.

You cannot (easily) observe the content of the images directly, but you can issue:

docker images

to view a list of the images on your system.

To work with images that are not just copies of stock images that you pulled, but install whatever you might need on top,
prepare a Dockerfile. You can use the one in ./ci/docker_images/ubuntu/noble as an example. The following
command builds an image using Dockerfile in the current directory as a recipe:

docker build -t onetep:noble .

The resultant image will be called onetep:noble. The Dockerfile is taken from the current directory (hence the .).

Issuing:

docker images

again will reveal a new image on our machine, called onetep:noble.

To boot up a container from this image, simply issue:

docker run -it onetep:noble

This will log you in as root into the container. Use exit to leave.

To list running containers (as opposed to static images), use:

docker ps

, Warning

Light-weight ubuntu Docker images do not have CA certificates set up. This will bite you when a workflow using
the Docker container image tries to git pull the repository – it will not be able to connect to GitHub. To fix this,
make sure your Dockerfile recipe contains:

apt-get install apt-transport-https ca-certificates -y
update-ca-certificates

See how we do this in ci/docker-images/ubuntu/noble.
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15.3.9 Pushing an image to GitHub Container Registry
GitHub Container Registry (ghcr.io) is a space for hosting and managing your docker images. In the next step, we will
push our image to ghcr.io. Note that what is pushed is not the Dockerfile, it’s the entire image.

First, we need to ensure you have the correct credentials. This only needs to be done once.

• Log in to GitHub, and click on your portrait on the top right.

• In the pull-down menu that opens, near the bottom, click on Settings (cogwheel).

• In the pane on the left that opened, at the very very bottom click on <> Developer settings.

• In the new pane on the left, click on Personal access tokens, and then Tokens (classic).

• Find your PAT and click on it.

• Under Select scopes ensure that you checked: write:packages, delete:packages, and workflow.

• Click the green Update token button at the bottom if you had to check any boxes. If not, your PAT was already
good to go.

Second, and that will have to happen any time you push an image, we need to log in to ghcr.io. To do this, issue:

echo <YOUR_PAT> | docker login ghcr.io -u <YOUR_USERNAME> --password-stdin

. . . where, naturally, you will replace <YOUR_PAT> by your Personal Access Token, and <YOUR_USERNAME> with your
GitHub username.

Subsequently, create a new tag. For example in my case that would be:

docker tag onetep:noble ghcr.io/jacekdziedzic/onetep:noble

This ties the name of the local image (here: onetep:noble) to the name of the pushed image (here: ghcr.io/
jacekdziedzic/onetep:noble). It is absolutely crucial that whatever your username is, it needs to lowercasified
at this point. Even though my username is JacekDziedzic, I had to use jacekdziedzic at this stage.

Finally, to push the image I would do:

docker push ghcr.io/jacekdziedzic/onetep:noble

. . . where the lowercase is again crucial.
As a side note, if you ever decide you need to get rid of an image pushed to ghcr.io, you can issue something like:

docker rmi ghcr.io/name:tag

. . . where your lowercasified username would be part of the name.

We now have the image on ghcr.io. The only remaining issue is that it is private to the user (here: me), and not
accessible from our GitHub Action workflow!

To fix this, follow these steps.

1. Go to the repository GitHub page.

2. At the top right, click on Settings (cogwheel).

3. In the pane on the left, under Security/Secrets and variables go to Actions

4. In the Secrets tab, click New repository secret.

5. One of these secrets is your username, I added it under JACEKS_USERNAME, the other is your PAT (the one with
the correct credentials for managing packages). I added it unser JACEKS_PAT.
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6. In the YAML file that will access the Docker image you just pushed, have a section like this after the runs-on
section:

container:
image: ghcr.io/jacekdziedzic/onetep:noble
credentials:
username: ${{ secrets.JACEKS_USERNAME }}
password: ${{ secrets.JACEKS_PAT }}

Here, image is the image tag you just pushed, and the names of the secrets correspond to the secrets you just
added to the repository. The spaces after {{ and before }} are significant.

More details on what we just did can be found at https://dev.to/willvelida/
pushing-container-images-to-github-container-registry-with-github-actions-1m6b.

15.4 Trimmed boxes
Author

Jacek Dziedzic, University of Southampton

Trimmed boxes are an internal detail of how NGWFs (or other quantities) on the double grid can be stored, manipulated
and communicated with high efficiency. They are used in fast density and in fast locpot integrals. Here we describe the
rationale and implementation details.

ð Notation.

A denotes atoms local to a process. B denotes atoms that S-overlap with atoms A, they are, in general, not local.
NGWFs on A are indexed with a, NGWFs on B are indexed with b, and so Aa and Bb can be used to index NGWFs
globally. NGWFs Aa are local, NGWFs Bb are, in general, not. Depending on who you ask, Aa NGWFs are
sometimes termed “col”, “ket” or “right”; Bb NGWFs are sometimes termed “row”, “bra” or “left”.

15.4.1 Rationale
ONETEP often works with quantities that have been interpolated to the double grid. A prime example would be NGWFs
being FFT-interpolated from the coarse grid to the double grid in the calculation of the density. Another example would
be rowsums, that is, quantities of the form rowsum_Aa = sum_\Bb K^Aa,Bb \phi_Bb, which, in the conventional
(slow) calculation of the density are also interpolated from the coarse grid to the double grid. A third example would
be the local potential that we obtain on the double grid.

FFT interpolation from the coarse grid to the double grid causes spilling. Quantities that were localised in a coarse-grid
tightbox now delocalise into the entire double FFT-box. Spilling is illustrated schematically in Fig. 15.1, and an actual
isoline for an s-like NGWF is shown in Fig. 15.2.

Conventionally, ONETEP works with the entire spilled NGWFs, because the spilled part is necessary for accuracy.
This is cumbersome. If a coarse FFT-box is, say, the size of 3 x 3 x 3 tightboxes, and the number of points is doubled
in each direction by moving to the double grid, and the volume of a box circumsribing a sphere is about twice that of
the sphere, this representation takes about 430 times more memory. We cannot, for instance, store more than a few of
such boxes.

Fortunately, we can get sufficient accuracy even if we restrict ourselves to a subset of the interpolated points in the
double FFT-boxes. It turns out that only ~1-5% of the points in the double FFT-box are needed to recover 99.9999-
99.999999% of the charge of the NGWF (which is one electron). This approach is, thus, an approximation, but it
is well-controllable. The points to be kept are selected based on a threshold – we keep all points whose (absolute)
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Fig. 15.1: “Spilling” of an NGWF due to Fourier interpolation. Left panel – NGWF (red) in an FFT-box (blue) on the
coarse grid in the simulation cell (black). Right panel – NGWF (red) in a double FFT-box (blue) on the double grid
in the simulation cell (black). The grid on the right is twice as fine (not shown). The orange dashed line shows the
original shape of the NGWF.

Fig. 15.2: “Spilling” of an s-like NGWF due to Fourier interpolation from the coarse grid to the double grid.
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value is below trimmed_boxes_threshold. We call this process trimming. The machinery for trimming now resides
in the trimmed_boxes module. The concept of trimming can be applied to other quantities in double FFT-boxes –
for instance, we also trim rowsum_Aa, and, if fast_locpot_int T is in effect, the local potential in the sphere of
\phi_Aa.

The main question is how to store and manipulate interpolated NGWFs (or rowsums, etc.) accurately and efficiently,
that is, how to store and manipulate the points encompassed by a chosen isoline (red) in Fig. 15.1, right panel. The
region of interest does not have to be contiguous.

Fig. 15.3: Storing only the points in the double tight-box (shown in orange) is not sufficiently accurate. Some points
that matter are contained in the Fourier ringing that is outside the tight-box.

The naive approach of storing just the points in the “double tight-box” of the NGWF (as shown Fig. 15.3) turns out to
be almost sufficiently accurate, but not quite, to get convergence to default RMS thresholds. It’s also not controllable.

Fig. 15.4: Storing all the points in a box that covers an isoline is impractical, because the Fourier ringing extends far
along the box axes (cf. Fig. 15.2), and we wind up storing points that are irrelevant (shown in green and not in red).

An alternative is to choose a threshold for the values of the NGWF (or rowsum, etc.) and to construct the smallest
cuboid (or actually a parallelepiped) that encompasses all those points, as shown Fig. 15.4. This is controllable (via
the threshold), but not very economical, because we store many more points than are necessary. This is because the
ringing extends almost exclusively along the axes of the cell, practically to the faces of the double FFT-box. We’d like
to keep this ringing, but not the points in the bulk of the double FFT-box.
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Fig. 15.5: Storing “just the points we need”, in a naive fashion, by storing where (linear indices on the double grid),
and what (values). This automatically takes care of the non-contiguity of the data we want to store.

15.4.2 Trimming
We can find which points we need (all points whose value is below a chosen threshold), and then remember their
positions and values, like shown in Fig. 15.5. For positions it is convenient to use a linear index on the double grid –
this makes them absolute (rather than relative to the double FFT-box), and permits handling PBCs at this stage.

Of course, such indexed approach is inefficient. Manipulating this representation is slow, and it takes more space than
needed – we need to store an integer index in addition to every double precision value. However, we can exploit the
fact that much of the region of interest is contiguous. This lets us proceed with a run-length encoding, as shown in Fig.
15.6 – we can store starting positions, run lengths (counts), and values.

Fig. 15.6: Storing “just the points we need”, using RLE compression, by storing where (linear indices on the double
grid), how many (run lengths) and what (values). This automatically takes care of the non-contiguity of the data we
want to store, but is efficient. Note that there are, in general, multiple values (red) for every run (shown in green).

For typical thresholds, the average run length is about 30. That means we only have to store two integers for every 30
double precision real values, so the overhead is minimal. Recall that we only keep 1-5% of the points in the double
FFT-box, which means we can afford storing and communicating such compressed trimmed boxes. As will be shown
later, manipulating them can also be done efficiently.
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ð Summary: trimming.

Trimming consists in extracting an RLE-compressed representation of all points in a double FFT-box whose (ab-
solute) values are below a specified threshold.

15.4.3 Bursts
We are often interested in calculating products of trimmed quantities. For NGWFs in particular this has to be done in
the inner loop, because even if we can afford to store all trimmed NGWFs, we cannot afford to store entire products,
there’s just too many of these. However, we can store information on which parts of the NGWFs overlap, which boils
down to determining which runs in \phi_Aa overlap where with which runs in \phi_Bb and by how much. These
overlaps are the bursts in which we will calculate sums and products later.

Fig. 15.7: To calculate the product between two compressed trimmed NGWFs, we first determine bursts, i.e. the
overlaps between runs of NGWF Aa (green) and runs of NGWF Bb (magenta). Bursts are shown as green-magenta
dashes.

The bursts can be determined outside of the inner loop and stored. Bursts do not store any information on the values,
only start and end indices to the values in \phi_Aa and \phi_Bb. Using this information we can calculate \sum_\Bb
K^Aa,B \phi_Bb more efficiently in the inner loop.

We can also use bursts to calculate products of \phi_Aa and rowsum_Aa, although, as we will see later, this is not very
efficient. It’s better to force rowsum_Aa to have the same shape as \phi_Aa using moulding.

ð Summary: bursts.

Bursts are a mechanism for efficiently calculating products of overlapping trimmed boxes, typically NGWFs. They
require substantial memory.
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15.4.4 Moulding
When a trimmed quantity T is multiplied by another quantity Q, we only care about the points in the mask of T. All
other points are zero. We can thus be smart, and carve out only a T–shaped part of Q for the product, and store it as
a trimmed quantity. This process is called moulding. Following moulding, calculating a product is trivial – it’s just a
pointwise operation on two trimmed quantities with the same masks.

We currently perform it in two scenarios:

• in fast_density_method 3 we mould rowsum_Aa, which is obtained from FFT interpolation, to the shape of
\phi_Aa,

• in fast_locpot_int we mould the local potential from the double-grid cell to the shape of \phi_Aa to obtain
the part of the local potential that is relevant to \phi_Aa.

ð Summary: moulding.

Moulding is the process of extracting, from a double grid, a quantity in the shape of another quantity, typically an
NGWF.

15.4.5 Keywords
See Fast density calculation (for users).

15.5 Fast density calculation (for developers)
Author

Jacek Dziedzic, University of Southampton

This section describes the “fast density” approach introduced in ONETEP 7.1.8 in January 2024. This is developer-
oriented material – for a user manual, see Fast density calculation (for users). This documentation pertains to ONETEP
7.3.50 and later. If you are using a version of ONETEP older than 7.3.50, please update – not everything you read here
will be applicable otherwise.

There are two slightly different methods for “fast density”, selected via fast_density_method 1 and
fast_density_method 2, with the latter now the default.

We focus on the calculation on the double grid. If fine_grid_scale is different from 2.0, the density gets interpolated
from the double to the fine grid, regardless of the approach for calculating the density on the double grid.

ð Notation.

A denotes atoms local to a process. B denotes atoms that S-overlap with atoms A, they are, in general, not local.
NGWFs on A are indexed with a, NGWFs on B are indexed with b, and so Aa and Bb can be used to index NGWFs
globally. NGWFs Aa are local, NGWFs Bb are, in general, not. Depending on who you ask, Aa NGWFs are
sometimes termed “col”, “ket” or “right”; Bb NGWFs are sometimes termed “row”, “bra” or “left”.

15.5.1 Rationale
The usual (“slow”) method for calculating electronic density in ONETEP proceeds as follows:
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// slow density
for all local atoms A {
dens_A = 0
for all NGWFs a on A {
(1) Transfer \phi_Aa to FFT-box.
(2) Calculate rowsum_Aa = sum_\Bb K^Aa,Bb \phi_Bb in FFT-box.
(3) FFT-interpolate \phi_Aa and rowsum_Aa to a double FFT-box.
(4) Multiply dens_Aa = \phi_Aa * rowsum_Aa in double FFT-box.
(5) dens_A += dens_Aa.

}
(6) Deposit box containing dens_A to double grid.

}

All \phi_Aa are local, so are K^Aa,Bb. Stage (2) involves comms of \phi_Bb in PPDs via function_ops. Stage (6)
involves comms of atom-densities dens_A via cell_grid_deposit_box(). The algorithm proceeds in batches (to
conserve memory), and is OMP-parallelised. Comms must those be perofmed carefully, are done from $OMP MASTER
regions in function_ops_sum_fftbox_batch() and $OMP CRITICAL in density_batch_interp_deposit().

The number of FFTs done is 2𝑁NGWF𝑁outer𝑁inner, where 𝑁NGWF is the number of NGWFs in the system, 𝑁outer is the
number of outer (NGWF) loop iterations,𝑁inner is the number of inner (LNV, EDFT) iterations. We ignore line searches
in this estimate for simplicity. In practice real FFTs are done in pairs throught a complex FFT, but we ignore this for
simplicity.

The main drawbacks of this approach are:
1. Having to repeat FFTs on \phi_Aa in the inner loop, even though they do not change.

2. Having to repeat FFTs on rowsum_Aa in the inner loop, because K^Aa,Bb changes.

3. Interspersing comms with calculation in function_ops_sum_fftbox_batch(), which makes GPU-
porting difficult, and comms tricky.

4. Having to calculate products of \phi_Aa and \phi_Bb in double FFT-boxes, even though “what matters”
is almost exclusively contained in the double tight-box of \phi_Aa. We need to do the whole double
FFT-boxes because of Fourier ringing from the interpolation.

5. Multiple depositions (and comms) to the same points in (6), because boxes of nearby A overlap.

(1) cannot be addressed directly by storing the interpolated \phi_Aa for the duration of the inner loop, because we
cannot afford to store full double FFT-boxes. However, we can leverage Trimmed boxes. By using only a fraction of
the points in the double FFT-boxes, we are able to store the interpolated NGWFs. This lets us address (1) directly – we
only interpolate \phi_Aa at the beginning of the inner loop, and can now afford to store the interpolated versions.

We address (2) and (3) by first interpolating only \phi_Aa, and then communicating them to where they are needed
(and where they become \phi_Bb). We use remote_mod for that, which separates the comms from the FFTs. In
fast_density_method 1 we communicate \phi_Bb in the form of trimmed boxes. In fast_density_method 2
we communicate \phi_Bb in PPDs on the coarse grid, and process them at destination. Of course, when communicat-
ing trimmed boxes, we only communicate the relevant points, not the entire double FFT-boxes.

15.5.2 Methods
In fast_density_method 1 we no longer have to interpolate rowsum_Aa = sum_\Bb K^Aa,Bb \phi_Bb, and we
avoid doing FFTs in the inner loop entirely – we build the rowsums from the trimmed \phi_Bb using bursts (described
earlier). The number of FFTs is then 𝑁NGWF𝑁outer (we interpolate all NGWFs every time they change), which saves
1-2 orders of magnitude in the number of FFTs. There is a price to pay, though: we need memory to store the trimmed
NGWFs, we have to communicate trimmed NGWFs rather than coarse-grid PPDs, and we need to do rowsum_Aa = \
sum_\Bb K^Aa,B \phi_Bb on the new representation somehow. If the latter can be done efficiently, we are addressing
(4) above, too.
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In fast_density_method 2 we similarly do the FFTs in the inner loop, but only for the rowsums, as trimmed \
phi_Aa are stored for the entire duration of the inner loop. However, we are smart and realize that we do not need the
entire rowsum_Aa, but only its part that overlaps with \phi_Aa – as these are multiplied by one another later on. Thus,
rather than trim rowsum_Aa to a threshold, we only keep a \phi_Aa-shaped fragment. This process is called moulding
(described earlier) – we take data from a double FFT-box and mould it to a shape of a previously trimmed NGWF. In
so doing, we avoid bursts altogether – multiplying two trimmed quantities with the same shape (“mask”) is a simple
pointwise job. This method has a vastly smaller memory footprint, and is light on comms, because it only transmits
NGWFs in PPDs on the coarse grid. Finally, this method GPU-ports well.

The fast density approach thus proceeds in two stages – one that is performed every time NGWFs change, and one that
is performed in the inner loop. The details of the stages depend on fast_density_method.

The following table summarizes the main differences between the three methods.

Detail method 1 method 2
FFTs done for \phi_Aa

in outer loop only
\phi_Aa in outer loop
rowsum_Aa in inner loop

FFT load minimal ~half of original
can be done on GPU

Communicated NGWFs all required \phi_Bb
Communicated how as trimmed boxes in PPDs on coarse
Comms load significant minimal
Trimmed storage \phi_Aa

\phi_Bb
\phi_Aa
rowsum_Aa (moulded)

Bursts yes, many
(pairs Aa-Bb)

no

Memory load high low
Expected CPU performance very good good
Expected GPU performance very good excellent

On a CPU, typical speed-ups obtained using fast density range from 2x to 6x for the total time spent calculating the
density, and between 10% and 50% can be shaved off the total calculation walltime.

On a GPU, typical speed-ups would be between 10x and 16x for the total time spent calculating the density, and between
50% and 70% shaved off the total calculation walltime. This measured is in a fair comparison – a CPU-only compute
node vs. the same compute node with a reasonable GPU (e.g. an NVIDIA A100).

15.5.3 Cost
The main drawback of fast density is increased memory consumption. There are two main components:

(A) The trimmed NGWF data itself, which is, to a large extent, replicated. In fast_density_method 1 a
single trimmed NGWF can be needed on many processes, because it could be a \phi_Bb to many NGWFs
Aa. The same holds for NGWFs in PPDs for fast_density_method 2. Moreover, this memory require-
ment does not scale inverse-linearly with the number of processes. That is, increasing the node count by a
factor of two doesn’t reduce the memory requirement by a factor of two, because there is more replication.

(B) The burst data (in fast_density_method 1).

Both (A) and (B) depend on the trimming threshold, and the shape of the NGWFs. Both tend to increase during the
NGWF optimisation as the NGWFs delocalise somewhat.

A typical plot of the memory used by fast_density_method 1 is shown in Fig. 15.8. For this calculation the slow
approach took 1893s (33.3% of the total walltime), and the fast approach took 727s (14.8% of total walltime), for a
speed-up of 2.6x. One-eighth of the total walltime was shaved off. Of the 727s only 66s were spent doing FFTs.
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Fig. 15.8: Memory used by the slow approach (magenta) and the fast approach (method 1) (cyan) for a calculation
on ethylene carbonate (4000 atoms) on 32 nodes of Archer2. 9 a0 NGWFs, 829 eV, EDFT. 117x117x117 FFT-box,
140x140x140 cell. 16 OMP threads were used.

15.5.4 Accuracy
The accuracy of the fast density approach can be demonstrated on an example – we consider the binding energy of
mannitol to 300 water molecules. The system is shown in Fig. 15.9.

15.5.5 Performance
I ran this testcase on 16 nodes of HSUper (8 processes on a node, with 9 threads each, saturating all 72 CPU cores on
a node) – both the complex and the water shell. The mannitol itself was ran on 1 node, because it’s small. I used the
default settings, only specifying fast_density T. Thus, this is for a calculation with fast_density_method 1.

Quantity Slow density Fast density
Binding energy (kcal/mol) -79.9027 -79.9014
Total walltime 1016s 718s (-29%)
Time to calculate density 520s 239s
Time spent doing FFTs 160s 23s
High-mem watermark on a node 55.6 GiB 69.7 GiB

As seen from the above table, we are accurate to ~0.001 kcal/mol, while shaving off 29% from the total walltime. The
density calculation itself was faster by a factor of 2.2.

I also performed scaling tests, using a 701-atom protein scoop at 827 eV, 9a0 NGWFs, 8 LNV iterations. I only ran
it for 4 NGWF iterations because it’s not properly terminated, which leads to a zero band-gap, meaning it cannot be
reliably converged to default thresholds (with either density method). These were run on different numbers of nodes of
HSUper, with 8 processes and 9 OMP threads per node.

Fig. 15.10 shows the walltime of the density calculation for the slow and fast approaches, while Fig. 15.11 shows the
strong scaling with respect to one node. It is clear that the fast approach is quite a bit faster than the original approach,
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Fig. 15.9: Our testcase: mannitol bound to 300 water molecules (926 atoms). 811 eV KE cutoff, 9 a0 NGWFs, 8 LNV
iterations.

Fig. 15.10: Time to calculate density in 4 NGWF iterations of a 701-atom protein scoop.
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Fig. 15.11: Strong parallel scaling of the two methods of calculating the density in for a 701-atom protein scoop.

although it does not scale that well to high core counts. Keep in mind that we pushed this system quite far by running
701 atoms on over 1600 CPU cores.

More detailed benchmarks of fast_density_method 2 will follow at some point.

15.5.6 Keywords
See Fast density calculation (for users).

15.5.7 Directions for improvement
This approach could be improved in a number of ways:

1. Setting up an allowance for used RAM, similarly to what is done in HFx. This would enable graceful
performance degradation in low-memory scenarios. This could be achieved by not storing all the bursts,
only those that fit within the allowance. The remaining bursts would have to be recalculated on the fly in
the inner loop.

2. Making it compatible with EMFT, complex NGWFs and mixed bases.

3. Adding an $OMP SCHEDULE toggle between STATIC and DYNAMIC in density_on_dbl_grid_fast()
for more control over determinism vs efficiency. Currently we use SCHEDULE(STATIC) to get more deter-
ministic results, but SCHEDULE(DYNAMIC) offers better efficiency. Toggling this at runtime is not trivial
(omp_set_schedule()).

4. Dynamically selecting MAX_TNGWF_SIZE. It’s currently a constant, and persistent_packed_tngwf is
not an allocatable.

5. A smarter way to flatten the computed density. Currently each process has their own density that spans the
entire cell and only contains contributions from the Aa NGWF it owns. We flatten it by a series of reduce
operations over all nodes. This is the main killer of parallel performance.
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15.6 Fast local potential integrals (for developers)
Author

Jacek Dziedzic, University of Southampton

This section describes the “fast locpot int” approach introduced in ONETEP 7.1.50 in July 2024. This is developer-
oriented material – for a user manual, see Fast local potential integrals (for users). This documentation pertains to
ONETEP 7.3.50 and later. If you are using a version of ONETEP older than 7.3.50, please update – not everything you
read here will be applicable otherwise.

We focus on the calculation on the double grid. If fine_grid_scale is different from 2.0, the local potential first
gets filtered from the fine to the double grid, regardless of the approach for calculating the local potential integrals the
double grid.

ð Notation.

A denotes atoms local to a process. B denotes atoms that S-overlap with atoms A, they are, in general, not local.
NGWFs on A are indexed with a, NGWFs on B are indexed with b, and so Aa and Bb can be used to index NGWFs
globally. NGWFs Aa are local, NGWFs Bb are, in general, not. Depending on who you ask, Aa NGWFs are
sometimes termed “col”, “ket” or “right”; Bb NGWFs are sometimes termed “row”, “bra” or “left”.

15.6.1 Rationale
The usual (“slow”) method for calculating local potential integrals in ONETEP is not very efficient. It intersperses com-
putations with comms (cell_grid_extract_box() is called from potential_apply_to_ngwf_batch(), plan
comms in function_ops_brappd_ketfftbox()). It multiplies the local potential with \phi_Bb in double FFT-
boxes in potential_apply_to_ngwf_batch().

Our goal is to improve on that, leveraging remote_mod for comms, and using Trimmed boxes for operating on double-
grid quantities. The implementation, in integrals_fast_mod is remarkably lean, and takes place almost exclusively
in integrals_fast_locpot_dbl_grid().

15.6.2 Methods
We proceed as follows:

(1) trimmed_boxes_new_ngwfs() makes sure that all local NGWFs Aa have been trimmed. It also communicates
all requisite NGWFs Bb in coarse-grid PPDs. If fast_density is in effect, this has been done before, and is
effectively free.

(2) integrals_fast_new_ngwfs() establishes the union of all points spanned by local NGWFs Aa (via
trimmed_boxes_all_local_positions_in_cell()). These are the points of interest, e.g. we will need
the local potential only for these points. By establishing the union, we avoid communicating the same points
many times, as part of multiple different NGWFs. Subsequently, if fast_ngwfs T, the communicated NGWFs
Bb are converted to the rod representation. If GPUs are in use, NGWFs Bb are copied to the device.

(3) We communicate the local potential, only for the points of interest, to whichever ranks need them. This happens
in integrals_fast_extract_locpot().

(4) Using trimmed_boxes_mould_set_from_cell(), the previously trimmed local NGWFs Aa are used to mould
corresponding trimmed locpots from the cell, for each local NGWF Aa. This happens in an OMP loop over Aa.
At this point we have tngwfs – a trimmed representation of \phi_Aa, and tlocpots – a trimmed representation
of \locpot_Aa, both with the same shape (mask).

(5) In an OMP loop over \phi_Aa, we
• Put the product \phi_Aa * locpot_Aa in double FFT-box.
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• Fourier filter to a coarse FFT-box.

• Dot with all S-overlapping \phi_Bb, store in a SPAM3 matrix. With fast_ngwfs F, this is done by
dotting PPDs with an FFT-box in integrals_fast_bra_ketfftbox(). With fast_ngwfs T, we
dot rods with an FFT-box in rod_rep_dot_with_box(), using GPUs if available.

Notably, \phi_Bb have been made available by remote_mod, so no comms are needed. We can simply use
basis_dot_function_with_box_fast() when working with PPDs and rod_rep_dot_with_box() when
working with rods.

(6) Symmetrise the SPAM3 matrix.

When using CPUs only, much of the time is spent in the Fourier filtering. With a GPU, this becomes much faster.
Copyin is avoided at all times. Copyout is avoided when fast_locpot_int_fast_ngwfs T is in use.

15.6.3 Performance
Two testcases were benchmarked so far – a ~2600-atom lysozyme protein with LNV, and a 353-atom Pt cluster with
EDFT. Only the time for the calculation of the local potential integrals was measured. Measurements were done on a
48-core node with and without an A100 GPU.

For the LNV testcase I obtained a speed-up of 5.3x on a CPU, and a further 2.7x speed-up once the GPU was used, for
a total speed-up of 14.3x. For the EDFT testcase I obtained a speed-up of 3.6x on a CPU, and a further 3.2x speed-up
once the GPU was used, for a total speed-up of 11.5x.

15.7 Fast NGWFs (for developers)
Author

Jacek Dziedzic, University of Southampton

This section describes the “fast ngwfs” approach introduced in ONETEP 7.3.26 in December 2024. This is developer-
oriented material – for a user manual, see Fast NGWFs (for users). This documentation pertains to ONETEP 7.3.50
and later. If you are using a version of ONETEP older than 7.3.50, please update – not everything you read here will
be applicable otherwise.

15.7.1 Rationale
The usual (“slow”) method for working with NGWFs on the coarse grid uses PPDs – parallelepipeds with axes parallel
to those of the simulation cell, spanning an integer number of grid points. In practice we use flat PPDs, as the default
number of points along a3 is 1, unless HFx is in use (where it’s more beneficial to use larger PPDs). Any NGWF sphere
can be covered fully with a number of PPDs. The coarse grid data is then stored as points in PPDs. Operations on
PPDs are straightforward and fast – there is data contiguity because the data in a PPD is stored as a linear 1D array.

Operations that mix PPDs and FFT-boxes are less straightforward and not as fast – there is data contiguity for the entire
length of the PPD along a1, but not a2 or a3. Furthermore, every time a PPD intersects with an FFT-box, we need to
establish which parts of the PPD overlap with the FFT-box, and which ones stick out and need to be ignored. This is
further complicated by ppd_loc – a feature for remembering of a PPD is actually a periodic image and needs to be
unwrapped back from the box to the image. Such PPDs are sometimes termed improper. The limited contiguity (a
PPD is typically only 5-7 points long) and no GPU support are further drawbacks.

With fast_density_fast_ngwfs T we switch to a rod representation for NGWFs in the calculation of fast density.

With fast_locpot_int_fast_ngwfs T we switch to a rod representation for NGWFs in the calculation of fast local
potential integrals.

A rod is oriented along the a1 direction and spans an integer number of PPDs. Its width along a2 and a3 is one point.
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Operations mixing rods and FFT-boxes are much faster, because they leverage contiguity – a rod is typically ~40-points
long. There are also fewer operations to determine which parts of a rod stick out of the FFT-box and which parts
overlap. Finally, rod operations have been GPU ported.

15.7.2 Details
For more details, see the banner in rod_rep_mod.F90, where rods, bunches, slots, and handling of periodicity are
described.

15.7.3 State of the art
Currently (February 2025, v7.3.50), fast NGWFs can be used in fast local potential integrals (fast_locpot_int T),
and in the fast density calculation (fast_density T).

The rest of ONETEP certainly does not benefit from fast NGWFs, yet.

15.7.4 Performance
No detailed performance analysis is available, but here are some tentative numbers.

Dotting two 9a0 NGWFs takes about:
• 13 us when using PPDs for the bra and an FFT-box for the ket,

• 4.2 us when using PPDs for both,

• 2.0 us when using rods for the bra and an FFT-box for the ket,

• 0.6 us on a GPU when using rods for the bra and an FFT-box for the ket.

In practice you will likely see very limited gains from fast NGWFs on a CPU, it’s mostly meant to speed up GPU
calculations.

15.8 History
The earliest versions of the code, dating back to before 2005, were committed to a revision control system based on
CVS. These files are still available on the TCM filesystem at /u/fs1/onestep/CVS_REPOSITORY. In around 2009 we
moved to Subversion, using a repository still hosted on the TCM filesystem in Cambridge. The SVN history was
migrated to Bitbucket, and subsequently to GitHub (2023) and can still be browsed within the current Git repository
(though attribution to authors is often not correctly recorded).

In June 2018, the ONETEP project was migrated from a Subversion repository to a Git repository. The hosting of
source code was simultaneously moved from cvs.tcm.phy.cam.ac.uk to Bitbucket.

In July 2023, the ONETEP project was migrated from Bitbucket to GitHub.

Note: A pdf version of the documentation can be downloaded here
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