================================================= Using van der Waals Density Functionals ================================================= :Author: Lampros Andrinopoulos, Imperial College London :Date: November 2012 Activating vdW-DF ================= The van der Waals energy is calculated in ONETEP using the van der Waals Density Functional method, developed by Dion *et al* [Dion2004]_. The only input variable needed to activate the vdW-DF functional is to set ``xc_functional VDWDF``. If a ``vdW_df_kernel`` file is not present in the working directory, it will be automatically generated. Theory ====== The form for the exchange-correlation functional proposed by Dion *et al* is: .. math:: :label: E_xc E_{xc} = E_{x}^{\rm{revPBE}} + E_c^{\rm{PW92}} + E_c^{\rm{nl}} where the non-local exchange-correlation energy is given by: .. math:: :label: E_nl_dion E_{c}^{\mathrm{nl}} = \frac{1}{2}\int\int d{\mathbf{r}}d{\mathbf{r}}'\rho({\mathbf{r}})\phi({\mathbf{r}},{\mathbf{r}}')\rho({\mathbf{r}}') where :math:`\rho({\mathbf{r}})` is the electron density at :math:`{\mathbf{r}}` and :math:`\phi({\mathbf{r}},{\mathbf{r}}')` is the nonlocal exchange correlation kernel whose form is explained in [Dion2004]_. Non-local correlation energy ---------------------------- The direct calculation of the integral in the form of Eq. :eq:`E_nl_dion` is very computationally expensive, as it involves a six-dimensional spatial integral. The algorithm proposed later by Roman-Perez and Soler [Roman-Perez2009]_ improves the efficiency of the calculation. They observed that with the form used by Dion *et al* for :math:`\phi`, the above expression can be re-written as: .. math:: E_{c}^{\mathrm{nl}} = \frac{1}{2}\int\int d{\mathbf{r}}d{\mathbf{r}}'\rho({\mathbf{r}})\phi(q,q',r)\rho({\mathbf{r}}') where :math:`r=|{\mathbf{r}}-{\mathbf{r}}'|`, and :math:`q` and :math:`q'` are the values of a universal function :math:`q_0[\rho({\mathbf{r}}),|\nabla \rho({\mathbf{r}})|]` at :math:`{\mathbf{r}}` and :math:`{\mathbf{r}}'`. They thus proposed a way to expand the kernel :math:`\phi` using interpolating polynomials :math:`p_\alpha(q)` for chosen values :math:`q_\alpha` of :math:`q`, and tabulated functions :math:`\phi_{\alpha\beta}(r)` for the kernel corresponding to each pair of interpolating polynomials. The interpolating polynomials :math:`p_{\alpha}` are cubic splines that evaluate to a Kronecker delta on each respective interpolating point. A mesh of 20 interpolation points is used in Soler’s implementation. The Soler form of the nonlocal energy can be written as: .. math:: :label: kernel \phi(q_1,q_2,r) = \sum_{\alpha\beta}\phi_{\alpha\beta}(r) p_{\alpha}(q_1) p_{\beta}(q_2) The universal function :math:`q_0({\mathbf{r}})` is in practice given by: .. math:: :label: q0 q_0({\mathbf{r}}) = \Bigg(1 + \frac{\epsilon_c^{\rm{PW92}}}{\epsilon_x^{\rm{LDA}}} + \frac{0.8491}{9}\Big(\frac{\nabla\rho}{2\rho k_F}\Big)^2\Bigg) k_F with :math:`k_F=(3\pi^2\rho)^{1/3}`. The quantity :math:`q_0` is first “saturated” to limit its maximum value, according to: .. math:: q_0^{\text{sat}}(\rho,{|\nabla{\rho}|}) = q_c \Bigg(1-\exp\Big(-\sum_{m=1}^{m_c}\frac{(q/q_c)^m}{m}\Big)\Bigg) where :math:`q_c` is the maximum value of the mesh of :math:`q_{\alpha}`. To evaluate this, we first define a quantity :math:`\theta_{\alpha}({\mathbf{r}}) = \rho({\mathbf{r}}) p_{\alpha}(q(\rho({\mathbf{r}}),\nabla\rho({\mathbf{r}}))` in real space. In terms of this, Eq. :eq:`E_nl_dion` can be written as: .. math:: :label: E_nl_real E_c^{\mathrm{nl}} = \frac{1}{2} \sum_{\alpha\beta} \int \int d{\mathbf{r}}d{\mathbf{r}}' \theta_{\alpha}({\mathbf{r}}) \theta_{\beta}({\mathbf{r}}') \phi_{\alpha\beta}(r) It can be shown that this can be written as a reciprocal space integral: .. math:: :label: E_nl E_c^{\mathrm{nl}} = \frac{1}{2} \sum_{\alpha\beta}\int d\mathbf{k} \theta^{*}_{\alpha}(\mathbf{k})\theta_{\beta}(\mathbf{k})\phi_{\alpha\beta}(k) Since the kernel is radially dependent in real space, it is only dependent on the magnitude of the G-vectors, hence the kernel need only be evaluated as a 1-dimensional function :math:`\phi_{\alpha\beta}(k)` for each :math:`\alpha`, :math:`\beta`. The kernel :math:`\phi` and its second derivatives are tabulated for a specific set of radial points and transformed to reciprocal space. These values are then used to interpolate the kernel at every point :math:`\mathbf{k}` in reciprocal space required to calculate Eq. :eq:`E_nl`. Kernel ------ This section details the evaluation of the NLXC kernel. The kernel :math:`\phi({\mathbf{r}},{\mathbf{r}}')` as specified by Dion *et al* [Dion2004]_ is given by (in atomic units): .. math:: \phi({\mathbf{r}},{\mathbf{r}}') = \frac{1}{\pi^2}\int_{0}^{\infty}a^2da \int_0^{\infty}b^2db W(a,b) T(\nu(a),\nu(b),\nu'(a),\nu'(b)) where .. math:: T(w,x,y,z) = \frac{1}{2}\Big[\frac{1}{w+x} + \frac{1}{y+z}\Big]\Big[\frac{1}{(w+y)(x+z)}+\frac{1}{(w+z)(y+x)}\Big], and .. math:: \begin{aligned} W(a,b) = 2\Big[ & (3-a^2)b\cos b \sin a \\ + & (3-b^2)a\cos a \sin b \\ + & (a^2+b^2-3)\sin a\sin b \\ - & 3ab\cos a \cos b \Big]/(a^3b^3),\end{aligned} and .. math:: \nu(y) = 1- e^{-\gamma y^2/d^2}; \quad \nu'(y) = 1- e^{-\gamma y^2/d'^2}; where :math:`d=|{\mathbf{r}}-{\mathbf{r}}'|q_0({\mathbf{r}})`, :math:`d'=|{\mathbf{r}}-{\mathbf{r}}'|q_0(\mathbf{r'})` Following this chain of logic, it is clear that this the kernel can in fact be considered as a function only of :math:`|{\mathbf{r}}-{\mathbf{r}}'|`, :math:`q_0({\mathbf{r}})` and :math:`q_0({\mathbf{r}}')`, since all other variables are dummy variables which are integrated over. The kernel can therefore be written as .. math:: :label: phi_tab \phi(r,q_0({\mathbf{r}}),q_0({\mathbf{r}}')) This makes it possible to evaluate the integrals above so as to tabulate the kernel values numerically for a pre-chosen set of radial points and :math:`q_0` values. Non-local potential ------------------- Starting from :eq:`E_nl`, one can evaluate the potential :math:`v^{\mathrm{nl}}({\mathbf{r}})` corresponding to this energy, by evaluating all terms in :math:`\partial E_{\mathrm{nl}} / \partial n({\mathbf{r}})`. The non-local potential :math:`v_i^{\mathrm{nl}}` at point :math:`{\mathbf{r}}_i` on the grid is thus written explicitly in terms of the derivatives of the :math:`\theta_{\alpha}` quantities with respect to the values :math:`\rho_j` at all other points on the grid: .. math:: :label: v_nl v_i^{\mathrm{nl}} = \sum_{\alpha}(u_{\alpha i}{\frac{\partial{\theta_{\alpha i}}}{\partial{\rho_i}}}+\sum_j u_{\alpha j} {\frac{\partial{\theta_{\alpha j}}}{\partial{\nabla\rho_j}}}{\frac{\partial{\nabla\rho_j}}{\partial{\rho_i}}}) This makes use of the quantities :math:`u_\alpha({\mathbf{r}})= \sum_{\beta}\mathcal{F}(\theta_{\beta}(\mathbf{k})\phi_{\alpha\beta}(k))`: which are already calculated in the evaluation of the energy. Using the White and Bird [White1994]_ approach, Eq. :eq:`v_nl` can be written as: .. math:: :label: v_nl_wnb v_{\mathrm{nl}}({\mathbf{r}}) = \sum_{\alpha} \Big( u_{\alpha}({\mathbf{r}}){\frac{\partial{\theta_{\alpha}({\mathbf{r}})}}{\partial{\rho({\mathbf{r}})}}} - \int\int i\mathbf{G}\cdot \frac{\nabla\rho({\mathbf{r}}')}{|\nabla\rho({\mathbf{r}}')|} {\frac{\partial{\theta_{\alpha}({\mathbf{r}}')}}{\partial{|\nabla\rho({\mathbf{r}}')|}}}e^{i\mathbf{G}\cdot ({\mathbf{r}}-{\mathbf{r}}')} d{\mathbf{r}}d\mathbf{G} \Big) For this we need to calculate :math:`{\frac{\partial{\theta}}{\partial{\rho}}}` and :math:`{\frac{\partial{\theta}}{\partial{{|\nabla{\rho}|}}}}`: .. math:: :label: dtheta_drho \begin{aligned} {\frac{\partial{\theta_\alpha}}{\partial{\rho}}} &=p_\alpha + \rho {\frac{\partial{p_\alpha}}{\partial{\rho}}} \nonumber \\ &=p_\alpha + \rho {\frac{\partial{p_\alpha}}{\partial{q}}}{\frac{\partial{q}}{\partial{\rho}}} \nonumber \\ &=p_\alpha + \rho {\frac{\partial{p_\alpha}}{\partial{q}}} \frac{q}{k_F} {\frac{\partial{k_F}}{\partial{\rho}}} + \rho {\frac{\partial{p_\alpha}}{\partial{q}}} k_F ({\frac{\partial{{\varepsilon}_c}}{\partial{\rho}}}{\varepsilon}_x^{-1}-{\varepsilon}_c{\varepsilon}_x^{-2}{\frac{\partial{{\varepsilon}_x}}{\partial{\rho}}} - \frac{8}{3(3\pi^2)^{2/3}}\frac{Z}{4}(\nabla\rho)^2 \rho^{-11/3}) \nonumber \\ &=p_\alpha + q/3{\frac{\partial{p_\alpha}}{\partial{q}}} + k_F\rho {\frac{\partial{p_\alpha}}{\partial{q}}} ({\frac{\partial{{\varepsilon}_c}}{\partial{\rho}}}{\varepsilon}_x^{-1}-{\varepsilon}_c{\varepsilon}_x^{-2}{\frac{\partial{{\varepsilon}_x}}{\partial{\rho}}}- \frac{2Z}{3(3\pi^2)^{2/3}} {|\nabla{\rho}|}^2\rho^{-11/3})\end{aligned} .. math:: :label: dtheta_dgradrho {\frac{\partial{\theta_\alpha}}{\partial{{|\nabla{\rho}|}}}} = \rho {\frac{\partial{p_\alpha}}{\partial{q}}} {\frac{\partial{q}}{\partial{{|\nabla{\rho}|}}}} = \frac{Z}{2\rho k_F} \rho {\frac{\partial{p_\alpha}}{\partial{q}}}{|\nabla{\rho}|} Combining Eqs. :eq:`v_nl_wnb`, :eq:`dtheta_drho` and :eq:`dtheta_dgradrho` gives us the final expression for the nonlocal potential. Overview of computational algorithm =================================== Module ``nlxc_mod`` ------------------- The main module for the calculation of the non-local energy and potential is ``nlxc_mod``. The tabulation of the kernel :math:`\phi` is performed only if a kernel file is not found, by ``vdwdf_kernel``. The input required to calculate the non-local energy and potential is essentially just the density and its gradient on the fine grid. The calculation of :math:`q` and the Fourier transformed :math:`\theta_\alpha` from Eq. :eq:`E_nl` is performed first, in the routine ``nlxc_q0_theta``. The derivatives of the :math:`\theta_\alpha`\ s with respect to the density and the module of its gradient are calculated on-the-fly in the real-space loop for the calculation of the non-local potential :math:`v_{nl}` in Eq. :eq:`v_nl`. This is to avoid storing unnecessary arrays. From Eq. :eq:`v_nl_wnb` two transforms are required per :math:`\alpha` value, a forward FFT, followed by a backward FFT for calculating the non-local potential. Subroutines to interpolate the polynomials as well as the kernel using cubic splines are used (``spline_interp`` and ``interpolate``). The interpolating polynomials :math:`p_\alpha` used are Kronecker deltas, so they take the value 1 on the interpolating point and are zero at the other points. Module ``vdwdf_kernel`` ----------------------- The kernel :math:`\phi_{\alpha\beta}(k)` is tabulated for 1024 radial reciprocal space points and 20 :math:`q_0` points. Gaussian quadrature is used to calculate Eq. :eq:`phi_tab` and then the result is Fourier transformed. The second derivatives of the kernel are calculated by interpolation, and also tabulated. The default name of the file is ``vdw_df_kernel``. The program will first check if this file exists: if it does, it will be loaded in and need not be calculated. If it does not, it will be generated from scratch (which only takes a few minutes) and then it is written out for future re-use in the current working directory. | The format of the ``vdw_df_kernel`` file is: ```` | ``N_alpha`` ``N_radial`` | ``max_radius`` | ``q_points(:)`` | ``kernel(0:N_radial,alpha,beta)`` | ``kernel2(0:N_radial,alpha,beta)`` where ``kernel2`` is the array of second derivatives of the kernel. [Dion2004] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. **92**, 246401 (2004). [Roman-Perez2009] G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. **103**, 096102 (2009). [White1994] J. A. White and D. M. Bird, Phys. Rev. B **50**, 4954 (1994).